Improving the Microstructures and Mechanical Properties of Hypereutectic Al-Si Alloys by Spray Forming Technique

Article Preview

Abstract:

The hypereutectic Al-Si alloys with different Cr additions have been prepared by spray forming and cast processes. With adding Cr into Al-25Si-5Fe-3Cu (wt.%, denoted as 3C) alloy, the long needle-like δ-Al4FeSi2 phases in the cast 3C alloy were almost substituted by skeletal α-Al(Fe,Cr)Si phase, which was refined into granular α-Al(Fe,Cr)Si phase (≤ 3-5 μm) in Cr-added deposits. By using hot extrusion almost full densification of the deposits can be made, but induces coarsening of Fe-bearing phases in as-deposited 3C and C10 (adding 1.0 wt.% Cr into 3C alloy) alloys. The size of the granular α-Al(Fe,Cr)Si phase is still less than 5 μm after hot extrusion of the as-deposited C20 alloy, while some plate-like β-Al5(Fe,Cr)Si phases (~20 μm) disappeared. The thermal stability, mechanical properties were also evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1416-1419

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. A. Belev, A. A. Aksenov, D. G. Eskin: Iron in Aluminum Alloys-Impurity and Alloying Element (CRC Press LLC, 2002).

Google Scholar

[2] B. Markoli, S. Spaic, Ljubljana, et al.: Aluminium Vol. 80 (1-2) (2004), p.84.

Google Scholar

[3] L. Narayanan, F. H. Samuel, J. E. Gruzleski: Metall. Mater. Trans. Vol. A 25 (1994), p.1761.

Google Scholar

[4] C. M. Dinnis, J. A. Taylor, A. K. Dahle: Metall. Mater. Trans. Vol. A 37 (2006), p.3283.

Google Scholar

[5] S. Seifeddine, S. Johansson, I. L. Svensson: Mater. Sci. Eng. Vol. A 490 (2008), p.385.

Google Scholar

[6] A. N. Lakshmanan, S. G. Shabestari, J. E. Gruzleski: Z. Metallkd Vol. 86 (7) (1995), p.457.

Google Scholar

[7] Y. Osawa, S. Takamori, T. Kimura, et al.: Mater. Trans. Vol. 48 (9) (2007), p.2467.

Google Scholar

[8] X Cao: Metall. Mater. Trans. Vol. B 37 (2006), p.1075.

Google Scholar

[9] Z. M. Xu, T. X. Li, Y. H. Zhou: J. Mater. Sci. Vol. 38 (2003), p.4557.

Google Scholar

[10] A.K. Srivastava, V.C. Srivastava, A. Gloter, et al.: Acta Mater. Vol. 54 (2006), p.1741.

Google Scholar

[11] B. Yang, F. Wang, J. S. Zhang, et al.: Scripta Mater. Vol. 45 (2001), p.509.

Google Scholar

[12] S. Annavarapu, R. D. Doherty: The Int. J. Powder Metall. Vol. 29 (4) (1993), p.331.

Google Scholar

[13] X. Liang, J. C. Earthman, E. J. Lavernia: Acta Metall. Mater. Vol. 40 (11) (1992), p.3003.

Google Scholar

[14] B. Cantor, K, H. Baik, P. S. Grant: Prog. Mater. Sci. Vol. 42 (1997), p.373.

Google Scholar

[15] L. G. Hou, Y. H. Cai, H. Cui, et al.: in: Proc. of the SDMA 2009 and ICSF VII, Bremen, (2009).

Google Scholar

[16] H. J. Huang, Y. H. Cai, H. Cui, et al.: Mater. Sci. Eng. Vol. A 502 (2009), p.118.

Google Scholar

[17] L. G. Hou, H. Cui, Y. H. Cai, et al.: Mater. Sci. Eng. Vol. A 527 (2009), p.85.

Google Scholar

[18] E. J. Lavernia, J. D. Ayers, T. S. Srivastsan: Int. Mater. Rev. Vol. 37 (1992), p.1.

Google Scholar