Evaluation of Heat Treatment and Ceramic Coating in Creep of Ti-6Al-4V

Article Preview

Abstract:

This study aimed to evaluate the resistance of a Ti-6Al-4V alloy in creep after heat treatments. It was used a Ti-6Al-4V alloy in cylindrical bars forms, forged condition and annealing at 190oC for 6 hours and cooled in air. The microstructure of Ti-6Al-4V alloy was evaluated after heat treatment and was submitted to creep tests at 600oC and stress conditions from 125 to 319 MPa at constant load. The Widmanstätten structure was obtained by heat treatment. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The alloy with Widmanstätten structure and ceramic coating shows greater resistance to creep and oxidation with a longer life time in creep. At higher stress condition, 600°C and 319 MPa, the Ti-6Al-4V alloy with ceramic coating didn’t show higher creep resistance. This condition presented higher tp value and the value. It occurred because at high stress condition the coating is very fragile, decreasing your creep resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

235-240

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Es-Souni: Mater. Charact. 46 (2001), p.365.

Google Scholar

[2] R. R. Boyer: Mater. Sci. Eng. A 213 (1996), p.103.

Google Scholar

[3] G. Norris: Felling the heat in: Metal Bulletin Monthly Vol. 386 (1994), pp.36-39.

Google Scholar

[4] R. W. Evans and B. Wilshire: Introduction to Creep (1993), p.115.

Google Scholar

[5] W. D. Callister Jr.: Materials Science and Engineering (2000).

Google Scholar

[6] S. A. Souza: Ensaios Mecânicos de Materiais Metálicos (1982).

Google Scholar

[7] http: / www. diferro. com. br/saiba_glossario. asp, (2007).

Google Scholar

[8] S. Abkowitz, J. J. Burke and R. H. Hiltz Jr.: Technology of Structural Titanium, D. Van Nostrand Company (1995), pp.31-32.

Google Scholar

[9] A. Rosen and A. Rottem: Mater. Sci. Eng. Vol. 22 (1976), p.23.

Google Scholar

[10] K.V. Sai Srinadh and V. Singh: Bull. Mater. Sci. Vol. 27 (2004), pp.347-354.

Google Scholar

[11] R. Westergard, N. Axén, U. Wiklund and S. Hogmark: Wear Vol. 246 (2000), p.12.

Google Scholar

[12] P.A. Siermers and R.L. Mehan : Nasa Tech. Rept. NA53-21727 (1982), p.828.

Google Scholar

[13] K. Lapierre, H. Herman and A.G. Tobin: Ceram. Eng. Sci. Proc. Vol. 12 (1991), p.1201.

Google Scholar

[14] H. Xu, S. Gong and L. Deng: Thin Solid Films Vol. 334 (1998), p.98.

Google Scholar

[15] Y.H. Sohn, E. Y. Lee, B. A. Nagaraj, R. R.; Biederman and R.D. Sisson JR.: Surface and Coatings Technology Vol. 146-147 (2001), p.132.

DOI: 10.1016/s0257-8972(01)01369-x

Google Scholar

[16] D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R. Barboza, F. Piorino Neto and E.A.C. Perez: Materials at High Temperatures Vol. 22 (2006), p.449.

DOI: 10.1179/mht.2005.053

Google Scholar

[17] M. J. R. Barboza, C. Moura Neto and C.R.M. Silva : Mater. Sci. Eng. A Vol. 369 (2004), p.201.

Google Scholar

[18] D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R. Barboza, F. Piorino Neto and E.A.C. Perez: Mater. Sci. Eng. A Vol. 399 (2005), p.276.

Google Scholar

[19] M. J. R. Barboza, E. A. C. Perez, M. M. Medeiros, D. A. P. Reis, M. C. A. Nono, F. Piorino Neto and C. R. M. Silva: Mater. Sci. Eng. A Vol. 428 (2006), p.319.

Google Scholar

[20] D.A.P. Reis, C. Moura Neto, C.R.M. Silva, M.J.R. Barboza and F. Piorino Neto: Mater. Sci. Eng. A Vol. 486 (2008), p.421.

Google Scholar

[21] American Society for Testing and Materials (ASTM), Surface Engineering 5, Philadelphia (1990).

Google Scholar