Indentation Size Effect and the Hall-Petch ‘Law’

Article Preview

Abstract:

The flow of material out from under regions in compression must occur by the operation of many slip systems, which together produce rotational flow. Such flow requires the accumulation of geometrically necessary dislocations, and leads to the indentation size effect: smaller indents produce higher hardness, a component of the hardness being inversely proportional to the square-root of the indenter size. A pattern of flow in polycrystals which satisfies both continuity of normal stress and continuity of matter at boundaries can be achieved by rotational flow, and it leads to a grain-size effect. Under most circumstances, the flow stress has a component which is inversely proportional to the square-root of the grain size, the Hall-Petch law. The flow is accompanied by the build-up of internal stress which can be relieved by intercrystalline cracking, thereby limiting the cohesive strength of polycrystals. The relationship between these ideas and traditional views is briefly explained, and an analysis is given of recent experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-26

Citation:

Online since:

November 2010

Authors:

Export:

Share:

Citation:

[1] M.F. Ashby: Phil. Mag. Vol. 21 (1970) p.399.

Google Scholar

[2] N.A. Fleck and J.W. Hutchinson: J. Mech. Phys. Sol. Vol. 41 (1994) p.1825; also, Adv. Appl. Mech., Vol. 33 (1997) p.295.

Google Scholar

[3] L.M. Brown: Slip circle constructions for inhomogeneous rotational flow, Materials Science Forum Vol. 550 (2007) pp.105-107.

DOI: 10.4028/www.scientific.net/msf.550.105

Google Scholar

[4] M.M. Chaudhri: Dislocations and Indentation, Chapter 12 in Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, Eds., Elsevier B.V., (1994).

Google Scholar

[5] H. Czerski and L.M. Brown: J. Phys. D.: Applied Physics Vol 41 (2008) pp.1-5.

Google Scholar

[6] D. Tabor, The Hardness of Metals (1951), Clarendon Press, Oxford; paperback edition (2000).

Google Scholar

[7] N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Yu.V. Milman, Acta metal. mater., Vol 41 (1993) pp.2855-2865.

Google Scholar

[8] J. G. Swadener, E. P. George. And G. M. Pharr: J. Mech. Phys. Sol. Vol 50 (2002) p.681.

Google Scholar

[9] Yong Lee Lim and M. Munawar Chaudhri: Phil. Mag. Vol A 79 (1999) p.2979.

Google Scholar

[10] L.M. Brown, in Plasticity, Failure and Fatigue in Structural Materials - from Macro to Nano, Proceedings of the Hael Mughrabi Honorary Symposium, (2008).

Google Scholar

[11] T. Narutani and J. Takamura: Acta metall. mater. Vol 39 (1991) p.2037 - (2049).

Google Scholar

[12] Fuquian Yang, Lingling Peng, and Kenji Okazaki; Materials Characterization Vol 57 (2006) pp.321-325.

Google Scholar

[13] X. Hou, A.J. Bushby, and N.M. Jennet; J. Phys. D: Applied Physics Vol 41 (2008) 074006 (7pp).

Google Scholar

[14] X. Hou; Geometrical Size Effects in the Plasticity of Metals by Micromechanical Testing: Ph.D. thesis for Queen Mary College, University of London, (2009).

Google Scholar

[15] K. K. McLaughlin and W. J. Clegg; J. Phys. D: Applied Physics Vol 41 (2008) 074007 (5pp).

Google Scholar

[16] N. Stelmashenko; Microstructual Studies of Plastic Indentations at Low Loads: Ph.D. thesis for the University of Cambridge, (1995).

Google Scholar

[17] N. Gane and J. M. Cox; Phil. Mag. Vol 22 (1970) p.881.

Google Scholar

[18] Pethica, J. B., Hutchings, R. and Oliver, W. C.; Phil. Mag. Vol A48 (1983) p.593.

Google Scholar

[19] Y. H. Lee, J. H. Hahn, S. H. Nahm, J. I. Jang, and D. Kwon; J. Phys. D: Applied Physics Vol 41 (2008) 074027 (5pp).

Google Scholar

[20] X. L. Wu, Y. T. Zhu, Y. G. Wei, and Q. Wei; Phys. Rev. Lett. Vol 103 (2009) 205504 (4pp).

Google Scholar

[21] Z. S. Basinski and S. J. Basinski; Dislocations in Solids Vol. 4 (1979), F. R. N. Nabarro, Ed., (North Holland, Amsterdam) p.26.

Google Scholar

[22] R. Madec, B. Devincre, and L. P. Kubin, Phys. Rev. Lett. Vol. 89 (2002) 255508 (4pp).

Google Scholar

[23] D. Tabor, The Hardness of Metals, Oxford University Press, New York and Oxford, 1951, reissued as a paperback in the Oxford Classics Series, (2000).

Google Scholar

[24] K. L. Johnson; Contact Mechanics, Cambridge University Press, Cambridge U.K., New York, Melbourne, (1985).

Google Scholar

[25] B. W. Mott, Microindentation Hardness Testing, Butterworth, London, (1956).

Google Scholar

[26] Oliver, W. C. and Pharr, G. M.; Journal of Materials Research Vol 7, (1992), p.1564; also Vol 19 (2004) p.3.

Google Scholar

[27] Kalei, G. N.; Mashinovedenie Vol 4, (1968) p.105 (in Russian).

Google Scholar

[28] Feodor M. Borodich and Leon M. Keer; International Journal of Solids and Structures, Vol 41 (2004) p.2479. This article reviews work on tip-shape functions.

Google Scholar

[29] D. Grabco, O. Shikimaka, and E. Harea; J. Phys. D. Appl. Phys. Vol 41 (2008) 074016 (9pp).

Google Scholar