From Wipers to the JKR Equation: Boundary Lubrication and Adhesion of Rubber

Article Preview

Abstract:

This review describes early work on rubber wiper blades and subsequent investigations. Observations on model wipers pressed against glass showed that the dry contact width was greater than that predicted by the classical Hertz equation, due to adhesion. That led to the establishment of the JKR equation to account for the adhesion. Although originally intended for ‘soft’ contacts, the equation now finds wide use. Surprisingly, the boundary lubrication aspects of the work revealed the action of repulsive forces that could be directly measured between rubber and glass in the presence of water. The quality of lubrication is subject to the acidity/alkalinity of the water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-37

Citation:

Online since:

November 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.D. Roberts and D. Tabor : Proc. Roy. Soc. Lond. Vol. A325 (1971) pp.323-345.

Google Scholar

[2] A.D. Roberts : Eng. Mater. Design Vol. 12 (1969) pp.55-59.

Google Scholar

[3] R. Stribeck: Z. Ver. dt. Ing. Vol. 46 (1902) p.1341; 1432-1463.

Google Scholar

[4] A.D. Roberts : Eng. Mater. Design Vol. 11 (1968) 579-580.

Google Scholar

[5] H. Hertz : Miscellaneous papers. Macmillan, London, UK (1896) p.146.

Google Scholar

[6] K.L. Johnson, K. Kendall and A.D. Roberts : Proc. Roy. Soc. Lond. Vol A324 (1971) pp.301-313.

Google Scholar

[7] D. Tabor: J. Colloid Interface Sci. Vol. 58 (1977) pp.2-13.

Google Scholar

[8] A.D. Roberts and A.G. Thomas : Wear Vol. 33 (1975) pp.45-64.

Google Scholar

[9] A.N. Gent and J. Schultz: Proc. Int. Rubber Conf. Brighton, IRI, London (1972) Paper C1.

Google Scholar

[10] A.D. Roberts : Rubb. Chem. Technol. Vol. 52 (1979) pp.23-42.

Google Scholar

[11] D. Maugis and M. Barquins : J. Phys. D: Appl. Phys. Vol. 11 (1978) p.1989-(2023).

Google Scholar

[12] J.A. Greenwood and K.L. Johnson: Phil. Mag. Vol. A43 (1981) pp.697-711.

Google Scholar

[13] R.A. Schapery: Int. Fract Vol. 11 (1975) pp.549-562.

Google Scholar

[14] G. Haiat, M.C. Phan Huy and E. Barthel:J. Mech. Phys. Sol. Vol. 51(2003) pp.69-99.

Google Scholar

[15] J.A. Greenwood : J. Phys. D: Appl. Phys. Vol. 37 (2004) pp.2557-2569.

Google Scholar

[16] J.A. Greenwood and K.L. Johnson: J. Coll. Interface Sci. Vol. 296 (2006) pp.284-291.

Google Scholar

[17] K.L. Johnson : Microstructure and Microtribology of Polymer Surfaces Ed.K.J. Wahl and V.V. Tsukruk (Amer. Chem. Soc., USA 2000).

Google Scholar

[18] E. Bartel: Journal of Physics D: Applied Physics Vol. 41 (2008) 163001.

Google Scholar

[19] A.D. Roberts : J. Phys. D: Appl. Phys. Vol. 4 (1971) pp.423-432.

Google Scholar

[20] E.J.W. Verwey and J.T.G. Overbeek: Theory of stability of lyophobic colloids (Elsevier, Amsterdam 1948).

Google Scholar

[21] B.V. Derjaguin and L. Laundau: Acta Physiochem. USSR Vol. 14 (1941) pp.633-662.

Google Scholar

[22] A.D. Roberts: J. Coll. Interface Sci. Vol. 41 (1972) pp.23-34.

Google Scholar

[23] J.N. Israelachvili: Intermolecular and Surface Forces (Academic Press, 2nd Edition, London, UK 1992).

Google Scholar

[24] P.A. Lewis: Direct measurement of the forces of interaction between macroscopic bodies (Ph.D. Thesis, Bristol University, UK 1972).

Google Scholar

[25] D.B. Hough and R.H. Ottewill: Progr. Colloid&Polymer Sci. Vol. 68 (1983) pp.101-112.

Google Scholar

[26] S.C. Richards, A.D. Roberts and P. Barnes: J. Nat. Rubber Res. Vol. 10 (1995) pp.154-169.

Google Scholar

[27] A.D. Roberts: J. Phys. D: Appl. Phys. Vol. 4 (1971) pp.433-440.

Google Scholar

[28] T.P. Mortimer and K.C. Ludema: Wear Vol. 28(1974) pp.197-206.

Google Scholar

[29] L. Sokoloff and S.L. Lee: Wear Vol. 88(1983) pp.207-219.

Google Scholar

[30] S.C. Richards and A.D. Roberts: J. Nat. Rubber Res. Vol. 9 (1994) pp.190-204.

Google Scholar

[31] S.F. Chen and A.D. Roberts: 3 (1998) pp.167-176.

Google Scholar

[32] A.D. Roberts and J.C. Richardson: Wear Vol. 67 (1981) pp.55-69.

Google Scholar

[33] K. Kendall: Molecular adhesion and its applications (Kluwer Academic, New York, USA 2001).

Google Scholar

[34] D. Maugis: Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, Germany 2000).

Google Scholar

[35] D.E. Packham: Int.J. Adhesion and Adhesives Vol16 (1996) pp.121-128.

Google Scholar

[36] D.C. Prieve and S.G. Bike: Chem. Eng. Communications Vol. 55 (1987) pp.149-164.

Google Scholar

[37] S. Bai, P. Huang, Y. Meng and S. Wen: Tribology Int. Vol. 39 (2006) pp.1405-1412.

Google Scholar

[38] M. Kalin, S. Novak and J. Vizintin: J. Phys. D: Appl. Phys. Vol. 39 (2006) pp.3138-3149.

Google Scholar

[39] Pawlak, J. Kotynska, Z.A. Figaszewski, A. Oloyede, A. Gadomski and A. Gudaniec: J. Achievements Mater. Manufacturing Engineering Vol. 23 (2007) pp.47-50.

Google Scholar

[40] D.B. Hough and R.H. Ottewill: Colloid and Interface Science IV Ed M. Kerker (Academic Press, New York, USA 1976).

Google Scholar