Effect of Surface Roughness on the Adhesion of Elastomers to Hard Surfaces

Article Preview

Abstract:

The work presented started with the aim of trying to explain why clean smooth surfaces of materials such as metals brought gently into contact show no adhesion. The observation by Johnson Kendall & Roberts of adhesion between smooth surfaces of an elastomeric hemisphere and a rigid substrate suggested a model contact system with which the effect of surface roughness could be investigated experimentally. Moreover the Johnson-Kendal-Roberts (JKR) contact theory could be used to predict the effect of roughness on adhesion. The observations and predictions obtained are compared, and the implications for the contact of two rigid materials outlined. The limitations of the validity of the predictions are mentioned. Further studies of the adhesion to rough surfaces, in particular the phenomenon of enhanced adhesion at low roughness, will be discussed. Finally, more recent theoretical work is briefly referred to.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-51

Citation:

Online since:

November 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Gane, P.F. Pfaelzer and D. Tabor: Proc. R. Soc. Lond. A Vol. 340 (1974) p.495.

Google Scholar

[2] K. L. Johnson, K. Kendall and A. D. Roberts: Proc. R. Soc. Lond. A Vol. 324 (1971) p.301.

Google Scholar

[3] K. N. G. Fuller and D. Tabor: Proc. R. Soc. Lond. A Vol. 345 (1975) p.327.

Google Scholar

[4] A. D. Roberts and A. G. Thomas: Wear Vol. 33 (1975) p.45.

Google Scholar

[5] V. A. Zhuravlev: Zh. Tekh. Fiz., Vol. 10 (1940) p.1447; Proc. Institution Mech. Engineers, Part J: J. Engineering Tribology, Vol. 221 (2007) p.893.

Google Scholar

[6] K. L. Johnson, in: Proc. IUTAM Symposium on the Mechanics of Contact of Deformable Bodies, Univ. Delft, (1974).

Google Scholar

[7] J. A. Greenwood and J. B. P. Williamson: Proc. R. Soc. Lond. A Vol. 295 (1966) p.300.

Google Scholar

[8] K. N. G. Fuller and A. D. Roberts: J. Phys. D: Appl. Phys. Vol. 14 (1981) p.221.

Google Scholar

[9] D. Maugis: J. Adhesion Sci. Technol. Vol. 10 (1996) p.161.

Google Scholar

[10] D. Maugis: Contact, Adhesion and Rupture of Elastic Solids, Springer-Verlag, Berlin (1999).

Google Scholar

[11] G. A. D. Briggs and B. J. Briscoe: J. Phys. D: Appl. Phys. Vol. 10 (1977) p.2453.

Google Scholar

[12] K. N. G. Fuller, in: Microscopic aspects of adhesion and lubrication, edited by J. M. Georges, Elsevier Scientific Publishing, Amsterdam (1982) p.321.

Google Scholar

[13] D. Maugis and M. Barquins: J. Phys. D: Appl. Phys. Vol. 11 (1978) p. (1989).

Google Scholar

[14] M. Barquins and D. Maugis: C. R. Acad. Sci. Paris D. Maugis Vol. 289B (1979) p.249.

Google Scholar

[15] B. N. J. Persson: Eur. Phys. J. E Vol. 8 (2002) p.385.

Google Scholar

[16] E. Barthel: J. Phys. D: Appl. Phys. Vol. 41 (2008) Paper 163001.

Google Scholar

[17] B. N. J. Persson: Phys. Rev. Lett. Vol. 87 (2001) Paper 116101.

Google Scholar

[18] B. N. J. Persson: Phys. Rev. Lett. Vol. 89 (2002) Paper 245502.

Google Scholar

[19] F. M. Borodich: Phys. Rev. Lett. Vol. 88 (2002) Paper 06960.

Google Scholar

[20] P. R. Guduru: J. Mech Phys. Solids Vol. 55 (2007) p.445.

Google Scholar

[21] K. L. Johnson: Int J. Solids Struct. Vol. 32 (1995) p.423.

Google Scholar