Structural Transition and Magnetic Properties of (Sr2-3xLa2xBax)FeMoO6

Article Preview

Abstract:

Ordered double perovskite oxides (Sr2-3xLa2xBax)FeMoO6 (0≤x≤0.3) have been investigated in this work. X-ray powder diffraction reveals that the crystal structure of the compounds changes from a tetragonal I4/m lattice to a cubic Fm 3m lattice around x=0.2. Though the nominal average size of the A site cation of (Sr2-3xLa2xBax)FeMoO6 is designed to be almost independent of x, the refinements of the crystal structure show that the lattice constants increase with x in both the tetragonal and the cubic phase regions due to electron doping. As the x increases, the degree of cationic ordering on the B site is decreased pronouncedly, while the Curie temperature of the compounds is nearly unchanged.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

1036-1040

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura and Y. Tokura: Phys. Rev. B Vol. 59 (1999), p.11159.

Google Scholar

[2] T. H. Kim, M. Uehara, S. W. Cheong and S. Lee: Appl. Phys. Lett. Vol. 74 (1999), p.1737.

Google Scholar

[3] D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray and A. Kumar: Phys. Rev. Lett. Vol. 85 (2000), p.2549.

Google Scholar

[4] K. I. Kobayashi, T. Kimura, H. Sawada et al.: Nature Vol. 395 (1998), p.677.

Google Scholar

[5] F. K. Patterson, C. W. Moeller and R. Ward: Inorg. Chem. Vol. 2 (1963), p.196.

Google Scholar

[6] F. S. Galasso, F. C. Douglas and R. J. Kasper: J. Chem. Phys Vol. 44 (1966), p.1672.

Google Scholar

[7] J. Navarro, C. Frontera, L. Balcells, B. Martínez and J. Fontcuberta: Phys. Rev. B Vol. 64 (2001), p.092411.

Google Scholar

[8] D. Serrate, J. M. De Teresa, J. Blasco, M. R. Ibarra, L. Morellón and C. Ritter: Appl. Phys. Lett. Vol. 80 (2002), p.4573.

DOI: 10.1063/1.1485119

Google Scholar

[9] D. Serrate, J. M. De Teresa, J. Blasco, M. R. Ibarra, L. Morellon and C. Ritter: Eur. Phys. J. B Vol. 39 (2004), p.35.

Google Scholar

[10] R. D. Shannon: Acta Cryst. A Vol. 32 (1976), p.751.

Google Scholar

[11] R. A. Young and D. B. Wiles: J. App. Cryst Vol. 15 (1982), p.430.

Google Scholar

[12] J. Rodroguez-Carvajal: Physica B Vol. 192 (1993), p.55.

Google Scholar

[13] P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S. W. Cheong, J. D. Jorgensen and D. N. Argyriou: Phys. Rev. B Vol. 56 (1997), p.8265.

Google Scholar

[14] J. Navarro, J. Fontcuberta, M. Izquierdo, J. Avila and M. C. Asensio: Phys. Rev. B Vol. 69 (2004), p.115101.

Google Scholar

[15] M.T. Anderson, K. B. Greenwood, G. A. Taylor and K. R. Poppelmeier: Prog. Solid State Chem. Vol. 22 (1993), p.197.

Google Scholar

[16] J. Fontcuberta, B. Martínez, A. Seffar, S. Piñol, J. L. García-Muñoz and X. Obradors: Phys. Rev. Lett. Vol. 76 (1996), p.1122.

DOI: 10.1103/physrevlett.76.1122

Google Scholar

[17] J. L. García-Muñoz, J. Fontcuberta, M. Suaaidi and X. Obradors: J. Phys.: Condens. Matter Vol. 8 (1996), p. L787.

DOI: 10.1088/0953-8984/8/50/003

Google Scholar

[18] H.Y. Hwang, S.W. Cheong, P.G. Radelli, et al.: Phys. Rev. Lett., Vol. 75 (1995) p.914.

Google Scholar

[19] C. Ritter, M. R. Ibarra, L. Morellon, J. Blasco, J. García, and J. M. De Teresa: J. Phys.: Condens. Matter Vol. 12 ( 2000 ) p.8295.

Google Scholar

[20] H. Han, H. M. Yang, W. Y. Lee, S. B. Kim, C. S. Kim, and B. W. Lee: IEEE Trans. Mag Vol. 39 (2003) p.3112.

Google Scholar