Functionalized Silica Fume for Chromium (VI) Removal from Wasterwater

Article Preview

Abstract:

Chemical modified silica fume by polyaniline was studied as a sorbent for removal of chromium (VI) determined by flame atomic absorption spectrometer. TEM analysis confirmed that the mean diameter of silica fume before and after treatment was of the order of 120 nm. The functionalized nanoparticles showed an extremely high efficiency towards chromium (VI) in the pH range of 4-5. Adsorption of chromium (VI) from water using functionalized silica fume was both a simple and efficient approach compared to the traditional adsorbents from the angle of integrated utilization of the secondary resources.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

93-96

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.S. Prasad, K.N. Maiti, R. Venugopal: Ceram. Int. Vol. 29 (2003), p.907.

Google Scholar

[2] A. El-Dakroury, M.S. Gasser: J. Nucl. Mater. Vol. 381 (2008), p.271.

Google Scholar

[3] L. Sereda, M.M. Lopez-Gonzalez, L.L. Yuan Visconte, R.C.R. Nunes, C.R.G. Furtado, E. Riande: Polymer Vol. 44 (2003), p.3085.

Google Scholar

[4] R. Demirboga: Build. Environ. Vol. 42 (2007), p.2467.

Google Scholar

[5] D. Aggarwal, M. Goyal, R.C. Bansal: Carbon Vol. 37 (1999), p. (1989).

Google Scholar

[6] P. Marzal, A. Seco, C. Gabaldon: J. Chem. Technol. Biotechnol. Vol. 66 (1996), p.279.

Google Scholar

[7] V.C. Srivastava, I.D. Mall, I.M. Mishra: J. Hazard. Mater. Vol. B134 (2006), p.257.

Google Scholar

[8] Nd.N. Amin, S. Kaneco, T. Kitagawa, A. Begum, H. Katsumata, T. Suzuki, K. Ohta: Ind. Eng. Chem. Res. Vol. 45 (2006), p.8105.

DOI: 10.1021/ie060344j

Google Scholar

[9] P. Mondal, C.B. Majumder, B. Mohanty: Ind. Eng. Chem. Res. Vol. 46 (2007), p.2550.

Google Scholar

[10] S. Mohan, G. Sreelakshmi: J. Hazard. Mater. Vol. 153 (2008), p.75.

Google Scholar

[11] V.C. Srivastava, I.D. Mall. I.M. Mishra: Colloid Surf. A. Vol. 312 (2008), p.172.

Google Scholar

[12] R. -V. Ostaci, D. Damiron, Y. Grohens, L. Leger, E. Drockenmuller: Langmuir Vol. 26 (2010), p.1304.

Google Scholar

[13] A.M. Dattelbaum, G.A. Baker, J.M. Fox, S. Iyer, J.D. Dattelbaum: Bioconjugate Chem. Vol. 20 (2009), p.2381.

DOI: 10.1021/bc900341s

Google Scholar

[14] S. Bozzini, P. Petrini, M.C. Tanzi, S. Zurcher, S. Tosatti: Langmuir Doi: 10. 1021/la904066y.

Google Scholar

[15] Yang Zhou, Shixing Wang, Bingjun Ding, Zhimao Yang: Chem. Eng. J. Vol. 138 (2008), p.578.

Google Scholar

[16] E. Uguzdogan, E.B. Denkbas, E. Qzturk, S.A. Tuncel, O.S. Kabasakal: J. Hazard. Mater. Vol. 162 (2009), p.1073.

Google Scholar

[17] L. Yang, S. Wu, J.P. Chen: Ind. Eng. Chem. Res. Vol. 46 (2007), p.2133.

Google Scholar

[18] Baojiao Gao, Fuqiang An, Kangkai Liu: Appl. Surf. Sci. Vol. 253 (2006), p. (1946).

Google Scholar

[19] A.M. Klibanov: J. Mater. Chem. Vol. 17 (2007), p.2479.

Google Scholar

[20] S.H. Jang, B.G. Min, Y.G. Jeong, W.S. Lyoo, S. C . Lee: J. Hazard. Mater. Vol. 152 (2008), p.1285.

Google Scholar

[21] F. Gode, E. Pehlivan: J. Hazard. Mater. Vol. 136 (2006), p.330.

Google Scholar

[22] J. Fang, Z. Gu, D. Gang, C. Liu, E.S. Ilton, B. Deng: Environ. Sci. Technol. Vol. 41(2007), p.4748.

Google Scholar

[23] J.L. Gardea-Torresdey, K. Dokken, K.J. Tiemann, J.G. Parsons, J. Romas, N.E. Gamez: Microchem. J. Vol. 71 (2002), p.157.

Google Scholar

[24] R. Ansari: Acta Chim. Slov. Vol. 53 (2006), p.88.

Google Scholar

[25] W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, A. Imyim: Talanta, Vol. 78 (2009), p.1004.

DOI: 10.1016/j.talanta.2009.01.017

Google Scholar