Effects of Impurities Distribution on the Crystal Structure and Electrical Properties of Multi-Crystalline Silicon Ingots

Article Preview

Abstract:

Multi-crystalline silicon ingots were prepared by directional solidification using vacuum induction melting furnace. The content of aluminum and iron deeply decreased in the columnar crystal region of the multi-crystalline silicon ingots. The columnar crystal growth broke off corresponded to the iron contents sharply increased. The height of columnar crystal in the silicon ingots related to the pulling rates had been clarified by the constitutional supercooling theory. The maximum of the resistivity and the minority carrier lifetime closed to the transition zone where the conductive type changed from p-type to n-type in silicon ingots. Further analysis suggested that the electrical properties were related to the contents of shallow level impurities aluminum, boron and phosphorus.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

101-104

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Sarti, R. Einhaus: Sol. Energy Mater. Sol. Cells Vol. 72 (2002), p.27.

Google Scholar

[2] M. K. Jun, K. K. Young: Sol. Energy Mater. Sol. Cells Vol. 81 (2004), p.217.

Google Scholar

[3] J. Nijs, S. Sivoththaman, J. Szlufcik, K. D. Clercq: Sol. Energy Mater. Sol. Cells Vol. 48 (1997), p.199.

Google Scholar

[4] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, L. J. Geerligs: J. Appl. Phys Vol. 97 (2005), p.033523.

Google Scholar

[5] R. Kvande, L.J. Geerligs, G. Coletti, L. Arnberg, M. Di Sabatino, E.J. Overlid, C.C. Swanson, J. Appl. Phys: Vol. 104 (2008), p.064905.

DOI: 10.1063/1.2956697

Google Scholar

[6] N. Yuge, K. Hanazawa, Y, Kato: Materials Transactions Vol. 45 (2004), p.850.

Google Scholar

[7] J. Degoulange, I. Perichaud, C. Trassy, S. Martinuzzi, Sol. Energy Mater. Sol. Cell: Vol. 92 (2008), p.1269.

Google Scholar

[8] M . Di Sabatino, E.J. Ovrelid, E. Olsen: Proceedings of the 23th European Photovoltaic Solar Energy Conference: Vol. 72 (2002), p.1068.

Google Scholar

[9] Scheil E. Z. Metallkd. 1942, 34: 70.

Google Scholar

[10] J.A. Burton, R.C. Prim, W.P. Slichter: J. Chem. Phys Vol. 21 (1953), p. (1987).

Google Scholar

[11] F. A. Trumbore, Bell. Syst. Tech. J, 39 (1960) 205-233.

Google Scholar

[12] H. Kodera: Jpn. J. Appl. Phys, Vol. 2 (1963), p.212.

Google Scholar

[13] N. Yuge, Y. Sakaguchi, H. Terashima, F. Aratani: J. Japan Inst. Metals, Vol 61 (1997), p.1100.

Google Scholar

[14] P.S. Ravishankar, J.P. Dismukes, and W. R. Wilcox: J. Cryst. Growth, Vol 71 (1985), p.579.

Google Scholar

[15] R. A. Brown, D. H. Kim: J. Cryst. Growth, Vol. 109 (1991), p.50.

Google Scholar

[16] S. Shankar, Y. W. Riddle, M. M. Makhlouf: Acta Materialia Vol 52 (2004), p.4447.

Google Scholar

[17] M. Rodot, J. E. Bourée, A. Mesli, G. Revel, R. Kishore, S. Pizzini: J. Appl. Phys. Vol 62 (1987), p.2556.

DOI: 10.1063/1.339446

Google Scholar