A Multi-Scale Study of Residual Stresses Created during the Cure Process of a Composite Tooling Material

Article Preview

Abstract:

This paper deals with the cure of an in-plane isotropic carbon-polymer tooling material, with a complex microstructure [1]. The Mori-Tanaka (MT) and Eshelby-Kröner self-consistent (EKSC) models are used in order to achieve a two-steps scale transition procedure, relating the microscopic properties of the material to their macroscopic counterparts. This procedure enables estimating the multi-scale mechanical states experienced by the material, i.e. the local (microscopic) stresses due to thermal and chemical shrinkage of the resin, along a typical, macroscopic stress-free, cure process. The influence of the chosen scale transition model on both the calculated effective properties of the material and its local stress states, is investigated. These results are a first step for investigating the service life fatigue of the material, as well as its failure behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-314

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Lacoste, S. Fréour and F. Jacquemin: Mechanics of Materials Vol. 42 (2010), pp.218-226.

Google Scholar

[2] P.P. Parlevliet, H.E.N. Bersee, A. Beukers: Composites Part A Vol. 37 (2006), p.1847–1857.

Google Scholar

[3] P.P. Parlevliet, H.E.N. Bersee, A. Beukers: Composites Part A Vol. 38 (2007), p.651–665.

Google Scholar

[4] P.P. Parlevliet, H.E.N. Bersee, A. Beukers: Composites Part A Vol. 38 (2007), p.1581–1596.

Google Scholar

[5] S.W. Tsaï and H.T. Hahn, in: Introduction to composite materials, Tecnomic Publishing co., Inc., Lancaster, Pennsylvania (1980).

Google Scholar

[6] T. Mori and K. Tanaka: Acta Metallurgica Vol. 21 (1973), pp.571-574.

Google Scholar

[7] J. Berryman and P. Berge: Mechanics of Materials Vol. 22 (1996), pp.149-164.

Google Scholar

[8] U. Kocks, C.N. Tomé and H.R. Wenk: Texture and anisotropy, Cambridge Univ. Press (1998).

Google Scholar

[9] S. Fréour, F. Jacquemin and R. Guillén: J. Reinf. Plast. Comp. Vol. 24 (2005), pp.1365-1377.

Google Scholar

[10] S. Fréour, F. Jacquemin and R. Guillén: J. Reinf. Plast. Comp. Vol. 25 (2006), pp.1039-1053.

Google Scholar

[11] G. Youssef, S. Fréour and F. Jacquemin: J. Comp. Mat. Vol. 43 (2009), pp.1621-1637.

Google Scholar

[12] G. Youssef, S. Fréour and F. Jacquemin: Mech. Comp. Mat. Vol. 45 (2009), pp.369-380.

Google Scholar

[13] R. Hill: Journal of the Mechanics and Physics of Solids Vol. 15 (1967), pp.79-95.

Google Scholar

[14] S. Fréour, F. Jacquemin and R. Guillén: J. Mat. Sci., Vol. 42 (2007), pp.7537-7543.

Google Scholar

[15] J.D. Eshelby: Proceedings of the Royal Society London, A241 (1957), p.376–396.

Google Scholar

[16] R. Hill: Journal of the Mechanics and Physics of Solids, Vol. 13 (1965), pp.89-101.

Google Scholar

[17] E. Kröner: Zeitschrift für Physik Vol. 151 (1958), pp.504-508.

Google Scholar

[18] T. Mura: Micromechanics of Defects in Solids (Martinus Nijhoff Pub., Netherlands, 1982).

Google Scholar

[19] Information on http: /www. hexcel. com/Products/Downloads.

Google Scholar

[20] Y.A. Msallem, F. Jacquemin, N. Boyard, A. Poitou, D. Delaunay, S. Chatel: Composites Part A Vol. 41 (2010), pp.108-115.

DOI: 10.1016/j.compositesa.2009.09.025

Google Scholar

[21] D.B. Adolf and R.S. Chambers: Polymer Vol. 38 (1997), pp.5481-5490.

Google Scholar

[22] S.R. White and Y.K. Kim: Mech. of Comp. Mater. and Struct. Vol. 5 (1998), pp.153-186.

Google Scholar

[23] B. Fiedler, M. Hojo, S. Ochiai, K. Schulte and M. Ando: Composites Science and Technology Vol. 61 (2001), p.1615–1624.

DOI: 10.1016/s0266-3538(01)00057-4

Google Scholar