Relationship between Microstructure and Photoelectron Behaviors of CdTe/Ligand Self-Assembly Quantum Dots

Article Preview

Abstract:

A water-soluble CdTe QDs capped by 3-Mercaptopropionic acid (MPA) were synthesized. The results confirmed that the grain size of the QDs was controlled by changing the reflux time of precursor solution and that the QDs possessed obviously quantum size effect. The results showed that a depletion layer CdTe1-xSx (0£x≤1) formed in between CdTe nanoparticle and ligand MPA. It is believed that two heterojunction-like structures possess quite distinct surface photovoltaic characteristic excited between the core-CdTe and the shell-CdS, and between CdTe/CdS and the ligand MPA, respectively, according to the EFISPS results of the MPA-capped CdTe QDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Han, X. Gao, J. Z. Su, S. Nie, Nature Biotechnol. 19 (2001) 631.

Google Scholar

[2] S. Srauf, K. Hennessy, M.T. Rakher, Y. -S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, D. Bouwmeester, Phys. Rev. Lett. 96 (2006) 127404.

DOI: 10.1103/physrevlett.96.127404

Google Scholar

[3] M. K. So, C. J. Xu, M. Loening, S. S. Gambhir, J. Rao, Nat. Biotechnol, 24 (2006) 339.

Google Scholar

[4] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, Science 307 (2005) 538.

Google Scholar

[5] J. M. Klostranec, W. C. W. Chan, Adv. Mater. 18 (2006) (1953).

Google Scholar

[6] N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmueller, H. Weller, J. Phys. Chem. B 106(2002) 7177.

DOI: 10.1021/jp025541k

Google Scholar

[7] W.C.W. Chan, S.M. Nie, Science 281 (1998) (2016).

Google Scholar

[8] M.J. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 281 (1998) (2013).

Google Scholar

[9] J. Rockenberger, L. Troger, A. L. Rogach, M. Tischer, M. Grundmann, A. Eychmuller, H. Weller, J. Chem. Phys. 108 (1998) 7807.

Google Scholar

[10] A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, A. Eychmüller, J. Phys. Chem. B 103 (1999) 10109.

DOI: 10.1021/jp9921809

Google Scholar

[11] H. Zhang, Z. Zhou, B. Yang, M.Y. Gao, J. Phys. Chem. B 107 (2003) 8.

Google Scholar

[12] H. Peng, L. J. Zhang, C. Soeller, J. Travas-Sejdic, Journal of Luminescence, 127 (2007) 721.

Google Scholar

[13] J. J. Peng, S. P. Liu, S. G. Yan, X. Q. Fan, Y. Q. He, Colloids and Surfaces A: Physicochem. Eng. Aspects, 359 (2010) 13.

Google Scholar

[14] K.Y. Li, H. Zhang, W. Y. Yang, S. L. Wei, D. Y. Wang, Materials Chemistry and Physics, 123 (2010) 98.

Google Scholar

[15] J. Fritsche, D. Kraft, A. Thißen, T. Mayer, A. Klein, Thin Solid Films 403-404 (2002) 252.

DOI: 10.1016/s0040-6090(01)01528-0

Google Scholar

[16] L. Kronik, Y. Shapira, Surface Science Reports 37 (1999) 1±206.

Google Scholar

[17] L. Q. Jing, X. J. Sun, J. Sun, W. M. Cai, Z. L. Xu, Y. G. Ding, Sol. Energy Mater. Sol. Cells, 79 (2003) 133.

Google Scholar

[18] T. Rajh, O. I. Micic, A. J. Nozik, J. Phys. Chem, 97 (1993) 11999.

Google Scholar

[19] M. Edward, J. R. Kosower, D. Souza, Chemical Physics, 324 (2006) 3.

Google Scholar