Tribological Properties of Hydrogenated Amorphous Carbon (a-C:H) Films on Aluminium Alloy Substrate under Different Substrate Bias Voltages

Article Preview

Abstract:

Hydrogenated amorphous carbon (a-C:H) films were deposited on aluminium alloy substrates by microwave electron cyclotron resonance chemical vapor deposition(ECR-PECVD) at different substrate pulse bias voltage. In order to enhance the interface bonding strength between the film and Al alloy substrate, a 50nm silicon film was firstly fabricated on aluminium alloy substrate by unbalanced magnetron sputtering. The fiction and wear properties of the a-C:H films were evaluated using a ball-on-disk tribometer in air at room temperature. The results showed that the tribological properties of the a-C:H films decreased with the substrate bias voltage increased from -150 to -1000V. The a-C:H films deposited at -150V bias voltage had the best wear resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-790

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Capote, L.F. Bonetti, L.V. Santos, V.J. Trava-Airoldi, E.J. Corat. Thin Solid Films Vol. 516 (2008), p.4011.

DOI: 10.1016/j.tsf.2007.08.007

Google Scholar

[2] Ming Xu, Xun Cai, Youming Liu, Shihao Pu, Paul K. Chu. Diamond Related. Mater. Vol. 17 (2008), p.1844.

Google Scholar

[3] H. Li, T. Xu, C. Wang, J. Chen, H. Zhou, H. Liu. Appl. Surf. Sci. Vol. 249 (2005), p.257.

Google Scholar

[4] D. Sheeja, B.K. Tay, S.P. Lau, X. Shi. Wear Vol. 249 (2001), p.433.

Google Scholar

[5] A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, G.R. Fenske. Surf. Coat. Technol. Vol. 133–134 (2000), p.448.

Google Scholar

[6] G.G. Stoney, Proc. R. Sot. London, Ser. A, Vol. 82 (1909), p.172.

Google Scholar

[7] Koki Tanake, Morihiro Okada, Takumi Kohno, Minoru Yanokura, Michi Aratani. Nucl. Instrum. Methods Phys. Res., Sect. B Vol. 58(1991), p.34.

Google Scholar

[8] B. Marchon, J. Gui, K. Grannen, J.C. Rauch, J.W. Ager, S.R.P. Silvar, J. Robertson. IEEE Trans. Magn. Vol. 33 (1997), p.3148.

DOI: 10.1109/20.617873

Google Scholar

[9] J. Robertson, Adv. Phys. Vol. 35 (1986), p.317.

Google Scholar

[10] X. Shi, L. K. Cheah, B. K. Tay. Thin Solid Film Vol. 312(1998), p.160.

Google Scholar

[11] B.K. Tay, X. Shi, H.S. Tan, H.S. Yang, Z. Sun. Surf. Coat. Technol. Vol . 105 (1998), p.155.

Google Scholar

[12] A. C. Ferrari, J. Robertson, Phys. Rev. B. Vol. 61(2000), p.14095.

Google Scholar

[13] P. Hammer, N.M. Victoria, F. Alvarez, J. Vac. Sci. Technol. , A Vol. 16 (1998), p.2941.

Google Scholar

[14] Y.C. Yang, E. Chang. Biomaterials Vol. 22(2001), p.1827.

Google Scholar

[15] J P Hirvonen, R Lappalainen, J Koskinen, A Anttila, T R Jervis and M Trkula. J. Mater. Res, Vol. 5(1990), p.2524.

DOI: 10.1557/jmr.1990.2524

Google Scholar

[16] Jun Fu Zhaoa, Zhi Hui Liub, James McLaughlina. Thin Solid Films Vol. 357 (1999), p.159.

Google Scholar

[17] A. Grill. Surf. Coat. Technol. Vol. 94-95 (1997), p.507.

Google Scholar