Actuality and Application Foreground of Nanofluids in Refrigeration System

Article Preview

Abstract:

Reaches in nanofluids heat transfer have conducted for decades, and lead to the development of the currently used heat transfer enhancement techniques. This paper is mainly concerned about the character of nanoparticles as an additive to the refrigeration system, and the preparation of nanofluids. Review the literatures about the nanoparticles used in the refrigeration system and refrigeration oil, and enhance of heat transfer of nanorefrigerant or nanorefrigeration oil. The suspended metallic or nonmetallic nanoparticles change the transport properties and heat transfer characteristics of the host fluid. The aim of this paper is outlook for foreground of the nanoparticles used in the refrigeration system, and to provide a guide line or perspective for future research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-265

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Choi: Enhancing thermal conductivity of fluids with nano-particles. ASME FED 231(1995), 99-103.

Google Scholar

[2] Xiaolin Jia et al.: Technology development of nano-power dispersion. Non-metallic minerals, 26(2003): 1-3.

Google Scholar

[3] Zukang Zhou et al.: The basis of colloid chemistry. B.J.: Beijing university Press. (1996).

Google Scholar

[4] R.X. Wang, Q.P. Wu, Y.Z. Wu, Use of nanoparticles to make mineral oil lubricats feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants. Energy and Buildings 42(2010), 2111-2117.

DOI: 10.1016/j.enbuild.2010.06.023

Google Scholar

[5] G.L. Ding, H. Peng, W.T. Jiang, Y.F. Gao: The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture. International Journal of Refrigeration 32(2009), 114-123.

DOI: 10.1016/j.ijrefrig.2008.08.007

Google Scholar

[6] Z.H. Liu, L. Liao: Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. International Journal of Heat and Mass Transfer 51(2008), 2593–2602.

DOI: 10.1016/j.ijheatmasstransfer.2006.11.050

Google Scholar

[7] Y.B. Zong: The Saturated Vapor Pressure of Oil-refrigerant and nano-particles /oil-refrigerant. B.J.: Beijing University of Civil Engineering and Architecture. (2008).

Google Scholar

[8] J.F. Lou: Mechanisms and Experimental Correlation of the Saturated Vapor Pressure of Refrigerant Containing Nano-refrigeration-oil. B.J.: Beijing University of Civil Engineering and Architecture. ( 2011).

Google Scholar

[9] S.S. Bi, L. Shi, H.L. Yong, R.X. Wang: Investigation on Materials Compatibility Using Nanoparticles Additive in Refrigerating System. Journal of RefrigerationVol. 27(2006): 1-4.

Google Scholar

[10] M.A. Kedzierskia, M. Gong: Effect of CuO nanolubricant on R134a pool boiling heat transfer. International Journal of Refrigeration 32(2009): 791-799.

DOI: 10.1016/j.ijrefrig.2008.12.007

Google Scholar

[11] M.A. Kedzierskia: Effect of Al2O3 Nanolubricant on R134a Pool Boiling Heat Transfer. International Journal of Refrigeration 34(2011): 498-508.

DOI: 10.1016/j.ijrefrig.2010.10.007

Google Scholar

[12] P H. eng, G.L. Ding, H.T. Hu, W.T. Jiang, D.W. Zhuang, K.J. Wang: Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. International Journal of Refrigeration 33(2010), 347-358.

DOI: 10.1016/j.ijrefrig.2009.11.007

Google Scholar

[13] M.A. Kedzierskia: Effect of bulk lubricant concentration on the excess surface density during R123 pool boiling. International Journal of Refrigeration 25( 2002): 1062-1071.

DOI: 10.1016/s0140-7007(02)00006-3

Google Scholar

[14] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee: Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Current Applied Physics 9(2009): e128-e131.

DOI: 10.1016/j.cap.2008.12.054

Google Scholar

[15] H.L. Yong, S.S. Bi, L. Shi: Experiment research on the different TiO2 nanoparticles concentrations for HFC134a/mineral oil refrigerator. Journal of engineering thermophysics 29(2008): 25-27.

Google Scholar

[16] K.J. Park, D.S. Jung: Boling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy and Buildings 39 (2007), 1061–1064.

DOI: 10.1016/j.enbuild.2006.12.001

Google Scholar

[17] K.J. Park, D.S. Jung: Enhancement of nucleate boiling heat transfer using carbon nanotubes. International Journal of Heat Mass Transfer 50(2007): 4499–4502.

DOI: 10.1016/j.ijheatmasstransfer.2007.03.012

Google Scholar

[18] P. Naphon, D. Thongkum, P. Assadamongkol: Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Conversion and Management 50(2009) : 772–776.

DOI: 10.1016/j.enconman.2008.09.045

Google Scholar

[19] S.S. Bi, K. Guo, Z.G. Liu, J.T. Wu: Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management 52(2011): 733-737.

DOI: 10.1016/j.enconman.2010.07.052

Google Scholar

[20] J.K. Kim, J.Y. Jung, Y.T. Kang: Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids. International Journal of Refrigeration 30(2007): 50-57.

DOI: 10.1016/j.ijrefrig.2006.04.006

Google Scholar