White Organic Light-Emitting Diode Based on Organic Quantum Well Structure

Article Preview

Abstract:

A white organic light-emitting diode (WOLED) with an organic quantum well structure of ITO/N,N’-diphenyl-N,N’-bis(3-methylphenyl)-1,1’-biphenyl-4,4’-diamine (TPD) / 4,7-Diphenyl-1,10-phenanthroline (Bphen)/5,6,11,12-tetraphenylnapthacene (Rubrene)/Bphen /LiF/Al was fabricated by vacuum evaporation. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380nm to 700nm of the visible light region with a blue emission from TPD and an interesting wide emission peaked at 525nm, which can be decomposed into three emissions at 480nm, 525nm, and 555nm, respectively. The peaks at 525nm and 555nm are attributed to the excitation emission from the Bphen/Rubrene/Bphen quantum well structure, which are obviously blue-shifted in comparison with the photoluminescence (PL) spectrum of Rubrene. The new peak at 480nm is attributed to the exciplex emission at TPD/Bphen interface since it was also observed in the PL spectra. The white light of the WOLED comes from combined contribution of exciplex emission and organic quantum well structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

645-649

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Tang and S. A. VanSlyke: Appl. Phys. Lett. Vol. 51 (1987), pp.913-915.

Google Scholar

[2] Junji Kido, Masato Kimura and Katsutoshi Nagai: Science Vol. 267 (1995), pp.1332-1334.

Google Scholar

[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al.: Nature Vol. 347 (1990), pp.539-541.

Google Scholar

[4] Liduo Wang, Gangtie Lei and Yong Qiu: J. Appl. Phys. Vol. 97 (2005), p.114503.

Google Scholar

[5] Stephen R. Forrest: Org. Electron. Vol. 4 (2003), pp.45-48.

Google Scholar

[6] B. W. D' Andrade and S. R. Forrest: Adv. Mater. Vol. 16 (2004), pp.1585-1595.

Google Scholar

[7] Y. Duan, M. Mazzeo, V. Maiorano et al.: Appl. Phys. Lett. Vol. 92 (2008), p.113304.

Google Scholar

[8] C. H. Kim and J. Shinar: Appl. Phys. Lett. Vol. 80 (2002), pp.2201-2203.

Google Scholar

[9] Y. S. Huang, J. H. Jou, W. K. Weng et al.: Appl. Phys. Lett. Vol. 80 (2002), pp.2782-2784.

Google Scholar

[10] C. W. Ko and Y. T. Tao: Appl. Phys. Lett. Vol. 79 (2001), pp.4234-4236.

Google Scholar

[11] YuanMin Wang, Feng Teng, Zheng Xu et al.: Mater. Chem. Phys. Vol. 92 (2005), pp.291-294.

Google Scholar

[12] F. F. So, S. R. Forrest,Y. Q. Shi et al.: Appl. Phys. Lett. Vol. 56 (1990), pp.674-676.

Google Scholar

[13] F. F. So and S. R. Forrest: Phys. Rev. Lett. Vol. 66 (1991), pp.2649-2652.

Google Scholar

[14] Markus Hallermann, Stephan Haneder, and Enrico Da Como: Appl. Phys. Lett. Vol. 93 (2008), p.053307.

Google Scholar

[15] Massimo Cocchi, Jan Kalinowski, Valeria Fattori et al.: Appl. Phys. Lett. Vol. 94 (2009), p.073309.

Google Scholar

[16] Hui Wang, Kevin P. Klubek and C. W. Tang: Appl. Phys. Lett. Vol. 93 (2008), p.093306.

Google Scholar

[17] Dewei Zhao, Fujun Zhang, Chao Xu et al.: Appl. Surf. Sci. Vol. 254 (2008), pp.3548-3552.

Google Scholar

[18] S. L. Lai, M. Y. Chan, Q. X. Tong et al.: Appl. Phys. Lett. Vol. 93 (2008), p.143301.

Google Scholar

[19] Hong He, Wenlian Li, Zisheng Su et al.: J. Alloys Compd. Vol. 470 (2009), pp.448-451.

Google Scholar

[20] L. C. Palilis, A. J. Mäkinen, M. Uchida et al.: Appl. Phys. Lett. Vol. 82 (2003), pp.2209-2211.

Google Scholar