Texture Evolution during Asymmetrical Warm Rolling and Subsequent Annealing of Electrical Steel

Abstract:

Article Preview

The core loss and magnetic induction of electrical steels are dependent on the microstructure and texture of the material, which are produced by the thermo-mechanical processing. After a conventional rolling process, crystal orientations of the α-(//RD) and γ-(//ND) fibers are strongly present in the final texture. These fibers have a drastically negative effect on the magnetic properties of electrical steels. By applying asymmetric rolling, significant shear strains could be introduced across the thickness of the sheet and thus a deformation texture with more magnetically favorable components is expected. In this study, an electrical steel of 1.23 wt.% Si was subjected to asymmetric warm rolling in a rolling mill with different roll diameters. The evolutions of both deformed and annealed textures were investigated. The texture evolution during asymmetric warm rolling was analyzed by crystal plasticity simulations using the ALAMEL model. A good fit between measured and calculated textures was obtained. The annealing texture could be understood in terms of an oriented nucleation model that selects crystal orientations with a lower than average stored energy of plastic deformation.

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar

Pages:

758-761

DOI:

10.4028/www.scientific.net/MSF.702-703.758

Citation:

T. Nguyen Minh et al., "Texture Evolution during Asymmetrical Warm Rolling and Subsequent Annealing of Electrical Steel", Materials Science Forum, Vols. 702-703, pp. 758-761, 2012

Online since:

December 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.