Nanometer Scale Microstructure and Microtexture of Biological Materials Revealed by High Spatial Resolution (15 to 5 kV) EBSD

Abstract:

Article Preview

High resolution EBSD analysis was carried out under specific experimental conditions (15 to 5 kV) on the skeleton of the modern carbonate brachiopod Gryphus vitreus and resolved nano- to microscale preferred crystallographic orientation patterns undetcted so far. As biologic superstructures are formed by controlled nanoparticle assembly it is essential to resolve their internal structure and texture with the highest possible spatial resolution. Low kV EBSD (15 kV and at 5 kV) provides the required resolution. We observe in the investigated carbonate skeletons a strongly interlocking microstructure of concave/convex grains. The interface topology of the interdigitating structure reaches below the micrometer scale. Individual grains reach sizes up to 20 µm (or even more) in one dimension. They show a mosaic spread of several degrees such that they must be addressed as mesocrystals. Even though the shell consists of three different microstructures with completely different crystal morphologies and grain boundary topologies the crystallographic texture of the three layers is similar. This indicates that distinct control mechanisms prevail when the shell is formed.

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar

Pages:

924-927

DOI:

10.4028/www.scientific.net/MSF.702-703.924

Citation:

E. Griesshaber et al., "Nanometer Scale Microstructure and Microtexture of Biological Materials Revealed by High Spatial Resolution (15 to 5 kV) EBSD", Materials Science Forum, Vols. 702-703, pp. 924-927, 2012

Online since:

December 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.