A Multi-Scale Modeling Approach to Simulate Intergranular Crack Propagation in Textured Polycrystalline Materials

Article Preview

Abstract:

In this paper, a multiscale modeling approach has been developed to simulate the intergranular crack propagation in textured polycrystalline materials. Embedded Atom Method (EAM) and Molecular Dynamics (MD) simulations were carried out to determine the energy and fracture strength of different types of grain boundaries in Ni3Al. Subsequently, the atomistic model has been integrated with the microstructure based model of crack propagation using the Voronoi-Markov Chain-Monte Carlo approach. The model has been utilized to evaluate the crack length for various scenarios and reasonable results are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

932-938

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Watanabe, An approach to grain boundary design for strong and ductile materials, Res. Mechanica 11 (1984) 47-84.

Google Scholar

[2] T. Watanabe, Structural effects on grain boundary segregation, hardening and fracture, J. Phys. C4 (1985) 555-566.

DOI: 10.1051/jphyscol:1985462

Google Scholar

[3] H. Lin, D.P. Pope, (1993): The influence of grain boundary geometry on intergranular crack propagation in Ni3Al, Acta Metall. Mater., 41 (1993) 553-562.

DOI: 10.1016/0956-7151(93)90085-7

Google Scholar

[4] G. Palumbo, K.T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Mater. 38 (1990) 2343-2352.

DOI: 10.1016/0956-7151(90)90101-l

Google Scholar

[5] J.Q. Su, M. Demura, T. Hirano; Grain boundary fracture strength in Ni3Al bicrystals, Philos. Mag. A, 82 (2002) 1541-1557.

DOI: 10.1080/01418610110118359

Google Scholar

[6] D.C. Crawford, G.S. Was, The role of grain boundary misorientations in intergranular cracking of Ni-16Cr-9Fe in 360°C argon and high purity water, Metall. Mater. Trans. A 23 (1992) 1195-1206.

DOI: 10.1007/bf02665051

Google Scholar

[7] V.Y. Gertsman, S.M. Bruemmer, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater. 49 (2001) 1589-1598.

DOI: 10.1016/s1359-6454(01)00064-7

Google Scholar

[8] T. Tanaka, S. Tsurekawa, H. Nakashima, H. Yoshinaga, Misorientation dependence of fracture stress and grain boundary energy in molybdenum with <110> symmetric tilt-boundaries, J. Japan Inst. Metals 58 (1994) 382-389.

DOI: 10.2320/jinstmet1952.58.4_382

Google Scholar

[9] H. Kurishita, A. Oishi, H. Kubo, H. Yoshinaga, Grain boundary fracture in molybdenum bicrystals with a <110> direction symmetric tilt boundary, J. Japan Inst. Metals 47 (1983) 546-554.

DOI: 10.2320/jinstmet1952.47.7_546

Google Scholar

[10] K. Ikeda, K. Morita, H. Nakashima, H. Abe, Misorientation dependence of grain boundary fracture strength and grain boundary energy for molybdenum <001> symmetric tilt boundaries, J. Japan Inst. Metals 63 (1999) 179-186.

DOI: 10.2320/jinstmet1952.63.2_179

Google Scholar

[11] L.C. Lim, L. T. Watanabe, Fracture toughness and brittle-ductile transition controlled by grain boundary character distribution (GBCD) in polycrystals, Acta Metall. Mater. 38 (1990) 2507-2516.

DOI: 10.1016/0956-7151(90)90262-f

Google Scholar

[12] Y. Pan, B.L. Adams, T. Olson, N. Panayotou, Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750, Acta Mater. 44 (1996) 4685-4695.

DOI: 10.1016/s1359-6454(96)00125-5

Google Scholar

[13] A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal, Science 321 (2008) 382-385.

DOI: 10.1126/science.1156211

Google Scholar

[14] M.A. Arafin, J.A. Szpunar, A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corros. Sci. 51 (2009) 119-128.

DOI: 10.1016/j.corsci.2008.10.006

Google Scholar

[15] Y. Pan, T. Olson, B.L. Adams, Applications of orientation imaging analysis to microstructural control of intergranular stress corrosion cracking, Can. Metall. Q. 34 (1995) 147-154.

DOI: 10.1179/cmq.1995.34.3.147

Google Scholar

[16] M.A. Arafin, J.A. Szpunar, A novel microstructure-grain boundary character based integrated modeling approach of intergranular crack propagation in polycrystalline materials. Comput. Mater. Sci. 47 (2010) 890-900.

DOI: 10.1016/j.commatsci.2009.11.020

Google Scholar

[17] M.A. Arafin, J.A. Szpunar, Modeling intergranular crack propagation in polycrystalline materials, Comp. Mater. Continua, 14 (2009) 125-140.

Google Scholar

[18] M.A. Arafin, J.A. Szpunar, Modeling of grain boundary character reconstruction and prediction intergranular fracture susceptibility in textured and random polycrystalline materials, Comput. Mater. Sci. 50 (2010) 656-665.

DOI: 10.1016/j.commatsci.2010.09.031

Google Scholar

[19] J. Lu, Computer Modeling of Intergranular Fracture in Textured Materials, 1995, McGill University, Montreal, Canada

Google Scholar

[20] S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986) 7983-7991

DOI: 10.1103/physrevb.33.7983

Google Scholar

[21] G.J. Voronoi, Nouvelles applications des parametres continus a la theorie des formes quadratiques. Premier memoire. Sur quelques proprietes des formes quadratiques positives parfaites, Reine Angew Math. 133 (1908) 97-178.

DOI: 10.1515/crll.1908.133.97

Google Scholar

[22] www.qhull.org

Google Scholar

[23] J.Q. Su, M. Demura, T. Hirano, Grain boundary fracture strength in Ni3Al bicrystals, Philos. Mag. A, 82 (2002) 1541-1557.

DOI: 10.1080/01418610110118359

Google Scholar