Enhanced Low-Temperature Impact Toughness of Ultra-Fine Grained SiCp/ZL108 Composites

Article Preview

Abstract:

A new strategy for increasing the low-temperature toughness of structural materials is in urgent need for overcoming the general rheotropic brittleness in coarse-grain state. Here, a unique phenomenon was observed that ultra-fine-grained (UFG) SiCp/ZL108 composites after severe plastic deformation (SPD) exhibit higher impact toughness at temperatures slightly lower than room temperature. The enhanced impact toughness is attributed to the simultaneous increase of strength and ductility of UFG materials at lower temperatures, related to grains or grain fragment boundary modification. This result demonstrates the advantage of fabricating UFG materials by SPD method and spurs the interest to use UFG materials in low-temperature conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1793-1798

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Goni, I. Mitxelena and J. Coleto: Materials Science and Technology Vol. 16 (2000) , p.743.

Google Scholar

[2] L.G. Chen, S.J. Lin and S.Y. Chang: Composites Science and Technology Vol. 66 (2006) , p.1793.

Google Scholar

[3] T. Ozden, E. Kilickap and O. akir: Journal of materials processing technology Vol. 198 (2008), p.220.

Google Scholar

[4] S. Ozden, R. Ekici and F. Nair: Composites (Part A) Vol. 38 (2007), p.484.

Google Scholar

[5] R. W. Hertzberg, in: Deformation and fracture mechanics of engineering materials. (Wiley, New York, 1989) pp.325-344.

Google Scholar

[6] R.Z. Valiev, I. V. Alexandrov, Y. T. Zhu and T. C. Lowe: J. Mater. Res. Vol. 17 (2002), p.5.

Google Scholar

[7] X. Zhang, H. Wang, R. O. Scattergood, J. Narayan, C. C. Koch, A. V. Sergueeva and A. K. Mukherjee: Appl. Phys. Lett. Vol. 81 (2002), p.823.

Google Scholar

[8] Y. T. Zhu and X. Z. Liao: Nature Materials Vol. 3 (2004), p.351.

Google Scholar

[9] A.B. Ma, K. Suzuki, Y. Nishida., N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu and T. Imura: Scripta Materialia Vol. 53 (2005), p.211.

DOI: 10.1016/j.actamat.2004.09.017

Google Scholar

[10] V.V. Stolyarov, R.Z. Valiev and Y. T. Zhu: Appl. Phys. Lett. Vol. 88, 041905(2006).

Google Scholar

[11] Bedir F and Ögel B: investigation of hardness, microstructure and wear properties of SiC-p reinforced Al composites. In: Proceeding of the 11th international conference on machine design and production (2004), Turkey.

Google Scholar

[12] A. P. Zhilyaev, B. K. Kim, G. V. Nurislamova, M. D. Baró, J. A. Szpunar and T. G. Langdon: Scripta Mater. Vol. 46 (2002), pp.575-580.

DOI: 10.1016/s1359-6462(02)00018-0

Google Scholar

[13] P. J. Apps, J. R. Bowen, and P. B. Prangnell: Acta Mater. Vol. 51 (2003), p.2811.

Google Scholar

[14] J.C. Tan and M.J. Tan: Materials science and engineering A Vol. 339(2003), p.81.

Google Scholar

[15] H.Q. Li and F. Ebrahimi: Adv. Mater, Vol. 17 (2005), p. (1969).

Google Scholar