[1]
N. Llorca-Isern, T. Grosdidier, J.M. Cabrera, Enhancing ductility of ECAP processed metals, Materials Science Forum 654-656 (2010) 1219-1222.
DOI: 10.4028/www.scientific.net/msf.654-656.1219
Google Scholar
[2]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[3]
S.C. Yoon, S.I. Hong, S.H. Hong, H.S. Kim, Densification and consolidation of powders by equal channel angular pressing, Materials Science Forum 534-536 (2007) 253-256.
DOI: 10.4028/www.scientific.net/msf.534-536.253
Google Scholar
[4]
M. Furukawa, Z. Horita T.G. Langdon, Application of equal-channel angular pressing to aluminum and copper single crystals, Materials Science Forum 539-543 (2007) 2853-2858.
DOI: 10.4028/www.scientific.net/msf.539-543.2853
Google Scholar
[5]
W. Skrotzki, N. Scheerbaum, C.G. Oertel, R. Arruffat-Massion, S. Suwas, L.S. Tóth, Microstructure and texture gradient in copper deformed by equal channel angular pressing, Acta Mater. 55 (2007) 2013-(2024).
DOI: 10.1016/j.actamat.2006.11.005
Google Scholar
[6]
R. Luri, C.J. Luis Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez, J.P. Fuertes, Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries, Journal of Materials Processing Technology 211 (2011).
DOI: 10.1016/j.jmatprotec.2010.08.032
Google Scholar
[7]
A. R. Eivani, A. Karimi Taheri, A new method for producing bimetallic rods, Materials Letters 61 (2007) 4110-4113.
DOI: 10.1016/j.matlet.2007.01.046
Google Scholar
[8]
W.Z. Han, H.J. Yang, X.H. An, R.Q. Yang, S.X. Li, Z.F. Zhang , Evolution of initial grain boundaries and shear bands in Cu bicrystals during one-pass equal-channel angular pressing, Acta Mater. 57 (2009) 1132-1146.
DOI: 10.1016/j.actamat.2008.11.001
Google Scholar
[9]
K.S. Lee, H.J. Jun, Y.S. Lee, Fabrication of bimetallic rods consist of a Zr-based BMG and a crystalline copper by co-extrusion, Intermetallics 18 (2010) 1958-(1963).
DOI: 10.1016/j.intermet.2010.01.018
Google Scholar
[10]
E. Bujet, Microstructure and texture of Copper/Niobium composites processed by ECAE, Int.J. Mater. Form (2010).
Google Scholar
[11]
G. Abrosimova, N. Afonikova, Y. Estrin, N. Kobelev, E. Kolyvanov, Orientation dependence of elastic properties and internal stresses in submicrocrystaline copper produced by equal channel angular pressing, Acta Mater. 58 (2010) 6656-6664.
DOI: 10.1016/j.actamat.2010.08.028
Google Scholar
[12]
G.K. Williamson, W.H. Hall, X-ray line broadening from filled aluminium and wolfram, Acta Metall. 1 (1953) 22-31.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[13]
A. Weibel, R. Bouchet, F. Boulc'h, p. Knauth, The big problem of small particles: a comparison of methods for determination of particle size in nanocrystaline anatase powders, Chem. Mater. 17 (2005) 2378-2385.
DOI: 10.1021/cm0403762
Google Scholar
[14]
N. C. Halder, C.N. Wagner, Separation of particle size and lattice strain in integral breadth measurements, Acta Cryst. 20 (1966) 312-313.
DOI: 10.1107/s0365110x66000628
Google Scholar
[15]
J. Narayan, Y.T. Zhu, Self-thickening, cross-slip deformation twinning model, Applied Physics Letters 92 (2008) 1519081-1519083.
DOI: 10.1063/1.2911735
Google Scholar
[16]
N. Lugo, N. Llorca, J.J. Suñol, J.M. Cabrera, Thermal stability of ultrafined grains size of pure copper obtained by equal-channel angular pressing, J. Mater. Sci. 45 (2010)2264-2273.
DOI: 10.1007/s10853-009-4139-7
Google Scholar
[17]
S. Lathabai, M. Vargas, M. Larroque, C. Urbani, The Influence of Processing Conditions on Hardness Homogeneity Evolution in Commercially Pure Cast Aluminium Processed by ECAP, Materials Science Forum 654-656 (2010) 1211-1214.
DOI: 10.4028/www.scientific.net/msf.654-656.1211
Google Scholar