Strengthening of Alloys with Elastic Anisotropy by Severe Plastic Deformation

Article Preview

Abstract:

Effects of the elastic anisotropy on deformation behavior are examined in a Ti-23%Nb-0.7%Ta-2%Zr-1.2%O (in at %) alloy, Gum Metal, and in an Fe-19%Ni-34%Co-8%Ti alloy with body centered cubic (bcc) crystal structure, and microstructural development in the iron based alloy during severe plastic deformation (SPD) process is discussed. Strong elastic anisotropy with reduced shear modulus, C11- C12, results in low ideal shear strength, which implies dislocation mediated plasticity easily occurs at lower stress. On the other hand, high pressure torsion (HPT), a typical SPD method, realizes very high shear stress during processing, which seems to reach the ideal shear strength in these alloys. Significant refinement of the grain size to 20 - 50 nm in the Fe-Ni-Co-Ti alloy is discussed in relation to the unique deformation mechanism which might be activated at ideal shear strength.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1799-1804

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Saito, T. Furuta, J. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara and T. Sakuma: Science Vol. 300 (2003), p.464.

DOI: 10.1126/science.1081957

Google Scholar

[2] S. Kuramoto, T. Furuta, J. Hwang, K. Nishino and T. Saito: Metall. Mater. Trans. A Vol. 37A (2006), p.657.

Google Scholar

[3] S. Kuramoto, T. Furuta, N. Nagasako and Z. Horita: Appl. Phys. Lett. (2009), 211901.

Google Scholar

[4] T. Furuta, N. Nagasako, K. Horibuchi, T. Ohsuna and Z. Horita: J. Mater. Sci. Vol. 45 (2010), p.4745.

Google Scholar

[5] M. Hara, T. Furuta, S. Kuramoto, Y. Shimizu, T. Yano and N. Takesue: Int. J. Mater. Res. Vol. 100 (2009), p.345.

Google Scholar

[6] C. Krenn, D. Roundy, J. W. Morris and M. Cohen: Mater. Sci. Eng. A 319-321 (2001), p.111.

Google Scholar

[7] H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa and T. Saito: Phys. Rev. B Vol. 70 (2004), 174113.

Google Scholar

[8] T. Li, J. W. Morris Jr., N. Nagasako, S. Kuramoto and D. C. Chrzan: Phys. Rev. Let. Vol. 98 (2007), 105503.

Google Scholar

[9] E. A. Withey, A. M. Minor, D. C. Chrzan, J. W. Morris Jr. and S. Kuramoto: Act. Mater. 58 (2010), p.2652.

Google Scholar

[10] D. C. Chrzan, M. P. Sherburne, Y. Hanlumyuang, T. Li and J. W. Morris, Jr.: Phys. Rev. B Vol. 82 (2010), 184202.

Google Scholar

[11] A. G. Every and A. K. McCurdy: Landolt-Börnstein, New Series, Group III, Vol. 29 (Springer, Berlin 1992) p.29.

Google Scholar

[12] E. Cesari, V. A. Chernenko, V. V. Kokorin, J. Pons and C. Segui, Scr. Mater. Vol. 40 (1999), p.341.

Google Scholar

[13] S. Takaki, K. Kawasaki and Y. Kimura: J. Mater. Process. Technol. Vol. 1 (2001), p.359.

Google Scholar

[14] T. Furuta, S. Kuramoto, N. Nagasako, and Z. Horita: submitted to Thermec' (2011).

Google Scholar