Effect of Annealing on the Microstructure, Texture and Mechanical Properties of Severely Deformed Interstitial Free Steel

Article Preview

Abstract:

Ti-stabilised interstitial free (IF) steel initially subjected to 8 passes, route BC equal channel angular pressing (ECAP) was further cold rolled (CR) at room temperature to 95% thickness reduction. Both samples were isothermally annealed at 710 °C following which their microstructures and micro-textures were compared via electron back-scattering diffraction (EBSD). The mechanical properties first obtained by shear punch testing (SPT) were later corroborated by uniaxial tensile tests. In the case of the ECAP material, continuous recrystallisation is followed by abnormal growth at prolonged annealing times with minor increases in high angle boundary (HAGB) fraction. On the other hand, the additionally CR material shows continuous recrystallisation accompanied by a reduction in the HAGB fraction. After 15 s annealing, the ECAP and CR samples exhibit a good strength-ductility balance; which corresponds to ~52% and ~67% softening, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1817-1822

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, Journal of Materials Research 17 (2002) 5-8.

Google Scholar

[2] J. H. Driver, Scripta Materialia 51 (2004) 819-823.

Google Scholar

[3] W. Q. Cao, A. Godfrey, N. Hansen, Q. Liu, Metallurgical and Materials Transactions A 40 (2009) 204-214.

Google Scholar

[4] G. H. Zahid, Y. Huang, P. B. Prangnell, Acta Materialia 57 (2009) 3509-3521.

Google Scholar

[5] H. Jazaeri, F. J. Humphreys, Acta Materialia 52 (2004) 3251-3262.

Google Scholar

[6] H. W. Zhang, X. Huang, R. Pippan, N. Hansen, Acta Materialia 58 (2010) 1698-1707.

Google Scholar

[7] M. Ferry, N. E. Hamilton, F. J. Humphreys, Acta Materialia 53 (2005) 1097-1109.

Google Scholar

[8] C. Y. Yu, P. L. Sun, P. W. Kao, C. P. Chang, Materials Science and Engineering A 366 (2004) 310-317.

Google Scholar

[9] X. Molodova, G. Gottstein, M. Winning, R. J. Hellmig, Materials Science and Engineering: A 460-461 (2007) 204-213.

DOI: 10.1016/j.msea.2007.01.042

Google Scholar

[10] D. G. Morris, M. A. Muñoz-Morris, Acta Materialia 50 (2002) 4047-4060.

Google Scholar

[11] O. Engler, M. -Y. Huh, Materials Science and Engineering A 271 (1999) 371-381.

Google Scholar

[12] S. S. Hazra, A. A. Gazder, A. Carman, E. V. Pereloma, Metallurgical and Materials Transactions A doi: 10. 1007/s11661-010-0535-5 (2010).

Google Scholar

[13] R. Hielscher, H. Schaeben, Journal of Applied Crystallography 41 (2008) 1024-1037.

Google Scholar

[14] S. S. Hazra, A. A. Gazder, E. V. Pereloma, Materials Science and Engineering: A 524 (2009) 158-167.

Google Scholar

[15] S. S. Hazra, E. V. Pereloma, A. A. Gazder, Acta Materialia (2010) (Under Review).

Google Scholar

[16] A. A. Gazder, S. S. Hazra, E. V. Pereloma, Material Science and Engineering A (2010) (Under Review).

Google Scholar

[17] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Pergamon Press, Oxford, (2004).

Google Scholar

[18] J. -Y. Choi, B. -S. Seong, S. C. Baik, H. C. Lee, ISIJ International 42 (2002) 889-893.

Google Scholar

[19] D. Juul Jensen, Acta Metallurgica et Materialia 43 (1995) 4117-4129.

Google Scholar

[20] C. Y. Yu, P. W. Kao, C. P. Chang, Acta Materialia 53 (2005) 4019-4028.

Google Scholar

[21] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Materialia 47 (2002) 893-899.

Google Scholar

[22] J. W. Wyrzykowski, M. W. Grabski, Materials Science and Engineering 56 (1982) 197-200.

Google Scholar