Grain Refinement and Superplastic Deformation Behavior of Zn-Al Alloy

Article Preview

Abstract:

Grain refinement and superplastic deformation behavior of Zn-Al alloys were investigated in this study. To obtain fine grain size in Zn-0.3Al alloys, rolling and equal channel angular pressing (ECAP) were conducted at temperatures from 40 to 160°C after casting and homogenization heat treatment. Material processing maps for Zn-0.3Al alloy were constructed from a series of compression tests conducted at temperatures from RT to 200°C and strain rates from 3×10-2 to 101 s-1. Superplasticity of ECAPed specimens were evaluated at the temperature of 100°C under the strain rate of 2×10-4 s-1. After ECAP of the Zn-0.3Al alloy, elongation was dramatically increased up to 500%. The effects of ECAP on the texture and anisotropy in the superplastic deformation bebavior were found to be negligible.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1775-1780

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A. Padmanabhan, and G. J. Davis, Superplasticity, Springer-Verlag, NY, 11 (1980).

Google Scholar

[2] O. D. Sherby, and J. Wadsworth, Prog. Mater. Sci., 33, 169 (1989).

Google Scholar

[3] J. W. Edington, K. N. Melton, and C. P. Cutler, Prog. Mater. Sci., 21, 61 (1976).

Google Scholar

[4] M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Mater. Sci. Eng., A241, 122 (1998).

Google Scholar

[5] A. H. Chokshi, A. K. Mukherjee, T. G. Langdon, Mater. Sci. Eng., R10, 237 (1993).

Google Scholar

[6] Y. Yoshizawa and T. Sakamura, J. Am. Soc. Cer., 73, 3069 (1990).

Google Scholar

[7] D. J. Schissler, A. H. Chokshi, T. G. Nieh and J. Wadsworth, Acta Matell., 40, 581 (1992).

Google Scholar

[8] A. H. Chokshi, Mater. Sci. Eng., A166, 119 (1993).

Google Scholar

[9] Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Scripta Mater., 37, 431 (1997).

Google Scholar

[10] R. Z. Valiev, and T. G. Langdon, Prog. Mater. Sci., 51, 881 (2006).

Google Scholar

[11] Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, and D. R. Barker, Metall. Trans., 15A, 1883 (1984).

Google Scholar

[12] Y. V. R. K. Prasad, and T. Seshacharyulu, Mater. Sci. Eng., A243, 82 (1998).

Google Scholar

[13] K. Kumar, Criteria for predicting metallurgical instabilities in processing (M. Sc Eng. Thesis, Indian Institute of Science, Bangalore, India, 1987).

Google Scholar

[14] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Scripta Mater., 35, 143 (1996).

Google Scholar

[15] S. Venugopal, S. L. Mannan, and Y. V. R. K. Prasad, Mater. Sci. Eng., A160, 63 (1993).

Google Scholar