Effect of Electric Field Strength on Texture Evolution of IF Steel Sheet during Annealing

Article Preview

Abstract:

Specimens cut from a cold-rolled IF steel sheet of 1 mm thickness were respectively annealed at 750°C for 20min under a range of DC electric fields (1kV/cm~4kV/cm). The Effect of electric field strength on recrystallization texture of IF steel sheet was studied by mean of X-ray diffraction ODF analysis. It was found that γ-fiber textures were notably enhanced as electric field strength increased. The strength of γ-fiber textures got their peak values as the applied electric field reached to 4kV/cm. The possible reason for such phenomena was discussed in the viewpoint of interaction between the applied electric field and the orientation-dependent stored-energy in deformed metals which is known as the driving force for recrystallization during annealing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2617-2621

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. K. Ray, J. J. Jonas and R. E. Hook: Int. Met. Rev., Vol. 39 (1994), p.129.

Google Scholar

[2] I. Samajdar, B. Verlinden and P. V. Houtte: Acta Mater., Vol. 46 (1998), p.2751.

Google Scholar

[3] H. Magnusson, D. J. Jensen, B. Hutchinson: Scripta Mater., Vol. 44 (2001), p.435.

Google Scholar

[4] H. Conrad, Z. Guo, A.F. Sprecher: Scr. Metall. Mater. 23 (1989), p.821.

Google Scholar

[5] H. Conrad, N. Karam, S. Mannan: Scripta Metallurgica, Vol. 17 (1983), p.411.

Google Scholar

[6] H. A. Lu, H. Conrad: Appl. Phys. Lett., Vol. 59 (1991), p.47.

Google Scholar

[7] M. Q. Li, S. Wu: Scripta Metall, Vol. 31 (1994), p.75.

Google Scholar

[8] Liu W, Liang K M, Zheng Y K and Cui J Z, Journal of Materials Science, 1996; 15: 1327.

Google Scholar

[9] T. K. Wu, W. Liu, X. L. Li et al.: Materials Letters, Vol. 59 (2005), p.1365.

Google Scholar

[10] W. Liu, T. K. Wu, A. Godfrey et al.: Scripta Mater., Vol. 52 (2005), p.495.

Google Scholar

[11] C. S. He, Y. D. Zhang, Y. N. Wang, X. Zhao, L. Zuo, and C. Esling: Scripta Mater., Vol. 48 (2003), p.737.

Google Scholar

[12] Z. C. Hu, C. S. He, X. Zhao, L. Zuo: Journal of Materials Science, Vol. 39 (2004), p.4231.

Google Scholar

[13] L. G. Schulz: J. Appl. Phys., Vol. 20 (1949), p.1030.

Google Scholar

[14] Z. D. Liang, J. Z. Xu and F. Wang: ICOTOM 6 Vol. 2 (1981), p.1259.

Google Scholar

[15] I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng., Vol. A238 (1997), p.343.

Google Scholar

[16] W.D. Cao, X.P. Lu, A.F. Spercher, H. Conrad: Mater. Lett. Vol. 9 (1990), p.193.

Google Scholar

[17] R. W. Ballufi: Grain boundary structure and kinetics (American Society for Metals, Milwaukee, Ohio,1979).

Google Scholar