Micromechanical Modeling of the Effective Viscoelastic Response of Polyamide-6-Based Nanocomposites Reinforced with Modified and Unmodified Montmorillonite Clay

Article Preview

Abstract:

A micromechanics-based approach using a self-consistent scheme based on the double-inclusion model is adopted to develop a pertinent model for describing the viscoelastic response of polymer/clay nanocomposites. The relationship between the intercalated nanostructure and the effective nanocomposite stiffness is constructed using an equivalent stiffness method in which the clay stacks are replaced by homogeneous nanoparticles with predetermined equivalent anisotropic stiffness. The capabilities of the proposed micromechanics-based model are checked by comparing with the experimental viscoelastic (glassy to rubbery) response of two polyamide-6-based nanocomposite systems reinforced with a modified montmorillonite clay (Cloisite 30B) and an unmodified sodium montmorillonite clay (Cloisite Na+), favoring, respectively, exfoliation and intercalation states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Pavlidou and C.D. Papaspyrides: Prog. Polym. Sci. Vol. 33 (2008), p.1119.

Google Scholar

[2] J.J. Luo and I.M. Daniel: Comp. Sci. Tech. Vol. 63 (2003), p.1607.

Google Scholar

[3] J. Wang and R. Pyrz: Comp. Sci. Tech. Vol. 64 (2004), p.925.

Google Scholar

[4] N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes and R.E. Cohen: Polym. Vol. 45 (2004), p.487.

Google Scholar

[5] F. Chivrac, O. Gueguen, E. Pollet, S. Ahzi, A. Makradi and L. Averous: Acta Biomater. Vol. 4 (2008), p.1707.

DOI: 10.1016/j.actbio.2008.05.002

Google Scholar

[6] A. Mesbah, F. Zaïri, S. Boutaleb, J.M. Gloaguen, M. Naït-Abdelaziz, S. Xie, T. Boukharouba and J.M. Lefebvre: J. Appl. Polym. Sci. Vol. 114 (2009), p.3274.

DOI: 10.1002/app.30547

Google Scholar

[7] K. Anoukou, F. Zaïri, M. Naït-Abdelaziz, A. Zaoui, T. Messager and J.M. Gloaguen: Comp. Sci. Tech. Vol. 71 (2011), p.197.

DOI: 10.1016/j.compscitech.2010.11.018

Google Scholar

[8] K. Anoukou, F. Zaïri, M. Naït-Abdelaziz, A. Zaoui, T. Messager and J.M. Gloaguen: Comp. Sci. Tech. Vol. 71 (2011), p.206.

DOI: 10.1016/j.compscitech.2010.11.020

Google Scholar

[9] S. Nemat-Nasser and M. Hori: Micromechanics: overall properties of heterogeneous materials (North-Holland, New York 1993).

DOI: 10.1016/b978-0-444-89881-4.50004-9

Google Scholar

[10] L.J. Walpole: J. Mech. Phys. Solids Vol. 17 (1969), p.235.

Google Scholar

[11] Z. Hashin: J. Appl. Mech. Vol. 32 (1965), p.630.

Google Scholar

[12] R. Matadi Boumbimba, S. Ahzi, N. Bahlouli, D. Ruch and J. Gracio: J. Eng. Mater. Tech. Vol. 133 (2011) pp.030908-1.

Google Scholar

[13] F. Zaïri, J.M. Gloaguen, M. Naït-Abdelaziz, A. Mesbah and J.M. Lefebvre: Acta Mater. Vol. 59 (2011), p.3851.

Google Scholar