Multiscale Modeling Electrospun Nanofiber Structures

Article Preview

Abstract:

The carbon nanotube (CNT) structure is a promising building block for future nanocomposite structures. Mechanical properties of the electrospun butadiene elastomer reinforced with CNT are analyzed by multiscale method. Effective properties of the fiber at microscale determined by homogenization procedure using modified shear-lag model, while on the macro scale effective properties for the point-bonded stochastic fibrous network determined by volume homogenization procedure using multilevel finite element. Random fibrous network was generated according experimentally determined stochastic quantificators. Influence of CNT reinforcement on elastic modulus of electrospun sheet on macroscopic level is determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-40

Citation:

Online since:

March 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ko, F. K., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G., Li, C. and Willis, P. Electrospinning of continuous Carbon Nanotube-Filled Nanofiber Yarns, Adv. Materials, 2003, 15, 1161.

DOI: 10.1002/adma.200304955

Google Scholar

[2] Ye, H., Lam, H., Titchenal, N., Gogotsi, Y., and Ko, F., Reinforcement and rupture behaviour of carbon nanotubes-polymer, Appl. Phys. Letters, 2004, 85, 1775.

DOI: 10.1063/1.1787892

Google Scholar

[3] Xie, X. L., Mai, Y. W. and Zhou, X. P., Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Material science and Engineering R , 2005, 49, 89.

Google Scholar

[4] Huang, Z. M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Sciences. and Technology, 2003, 63, 2223.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[5] Kim, G. H. Electrospinning processing field-controllable electrode, J. of Polymer Science: Part B: Polymer Physics, 2006, 44, 1426.

Google Scholar

[6] Dror, Y., Salalha, W., Khalfin, R. L. Cohen, Y. Yarin, A. L. and Zussman, E.,. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning, Langmuir, 2003, 19, 7012.

DOI: 10.1021/la034234i

Google Scholar

[7] Gates, T. S., Odegard, G. M., Frankland, S. J. V. and Clancy, T. C., Computational materials: Multi-scale modeling and simulation of nanostructured materials, Composite Science and Technology, 2005, 65, 2416.

DOI: 10.1016/j.compscitech.2005.06.009

Google Scholar

[8] Gao, X. L., Li, K., A shear-lag model for carbon nanotube-reinforced polymer composites, Int. J. of Solids and Struct., 2005, 42, 1649.

DOI: 10.1016/j.ijsolstr.2004.08.020

Google Scholar

[9] Nairn, J. A., Generalized shear-lag analysis including imperfect interfaces, Adv. Comp. Letters, 2004, 13, 6.

DOI: 10.1177/096369350401300601

Google Scholar

[10] Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg. 192 (2003) 3233.

DOI: 10.1016/s0045-7825(03)00348-7

Google Scholar

[11] Myers, R. H. and Montgomery, D. C., 1995. Response surface methodology; process and product optimization using designed experiments. New York: Wiley-Interscience.

Google Scholar

[12] Zhigilei, L. V., Wei, C. and Srivastava, D. Mesoscopic model for dynamic simulation of carbon nanotube, Physical Rewiew B, 2005, 71, 165417.

Google Scholar

[13] Silling, S. A. and Bobaru, F., Peridynamics modeling of membranes and fibers, Int. J. Non-linear Mechanics, 2005, 40, 395.

DOI: 10.1016/j.ijnonlinmec.2004.08.004

Google Scholar

[14] Berhan, L., Yi, Y. B., Sastry, A. M., Munoz, E., Selvidge, M. and Baughman, R., Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials, J. of Appl. Physics, 2004, 95, 4335.

DOI: 10.1063/1.1687995

Google Scholar

[15] Eichhorn, S. and Sampson, W. W., Statistical geometry of pores and statistics of porous nanofibrous assemblies, J. of the Royal Soc. Interface, 2005, 2, 309.

DOI: 10.1098/rsif.2005.0039

Google Scholar

[16] Agic, A. and B. Mijovic, Mechanical properties of electrospun carbon nanotube composites, The Journal of the Textile Institute 2006, 97, 419.

DOI: 10.1533/joti.2006.0264

Google Scholar

[17] Wu, X. F. and Dzenis, Y. A., Elasticity of planar fibre networks, J. of Appl. Physics, 2005, 98, 093501-9.

Google Scholar