Multiscale Finite Element Modelling of Gallery Failure in Epoxy-Clay Nanocomposites

Article Preview

Abstract:

A multiscale finite element (FE) methodology is applied to study failure behaviour of an intercalated epoxy-clay nanocomposite. A 2D FE model of the nanocomposite is built to capture nanocomposite morphology and gallery failure mechanism. Intercalated morphology is reconstructed using a random dispersion of clay tactoids within the epoxy matrix, while the galleries are modeled using cohesive zone elements. The nanocomposite response is predicted by numerical homogenization technique. The effects of cohesive law parameters (particularly the fracture energy) and clay volume fraction on the macroscopic behavior of the nanocomposite are investigated. The analysis shows that gallery failure is the main cause of strength reduction of the nanocomposite. Moreover, the strength reduction is found to increase with the clay content, which is in a qualitative agreement with available experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kotsilkova: Thermoset Nanocomposites for Engineering Applications (Smithers Rapra Press, August 2007).

Google Scholar

[2] C. Zilg, R. Mulhaupt, J. Finter: Macromol. Chem. Phys. Vol. 200, 661-670 (1999).

Google Scholar

[3] A. Zerda, A. Lesser: Journal of Polymer Science Vol. 39, 1137-1146 (2001).

Google Scholar

[4] X. Kornmann, R. Thomann, R. Mulhaupt, J. Finter, L. Berglund: Journal of Applied Polymer Science Vol. 86, 2643-2652 (2002).

Google Scholar

[5] K. Wang, L. Chen, J. Wu, M.L. Toh, C. He, and A.F. Yee: Macromolecules Vol. 38, 788-800 (2005).

Google Scholar

[6] B. Qi, Q.X. Zhang, M. Bannister, Y.W. Mai: Composite Structures Vol. 75, 514-519 (2006).

Google Scholar

[7] A.J. Kinloch, A.C. Taylor: Journal of Material Science Vol. 41, 3271-3297 (2006).

Google Scholar

[8] S.R. Lim, and W.S. Chow: Polymer-Plastics Technology and Engineering Vol. 50, 182-189 (2011).

Google Scholar

[9] T.P. Mohan, K. Kanny, R. Velmurugan: Int J Plast Technol Vol. 13, 123-132 (2009).

Google Scholar

[10] T.D. Ngo, M.T. Ton-That, S.V. Hoa, K.C. Cole: Journal of Science and Engineering of Composites Materials Vol. 17, (2010).

Google Scholar

[11] B. Akbari, R. Bagheri: European Polymer Journal Vol. 43, 782-788 (2007).

Google Scholar

[12] G. Khanbabaei, J. Aalaie, A. Rahmatpour, A. Khoshniyat, and M.A. Gharabadian: Journal of Macromolecular Science Vol. 46, 975-986 (2007).

DOI: 10.1080/00222340701457287

Google Scholar

[13] J.Y. Park, T.B. Davis, and P.L. Sullivan: Journal of Reinforced Plastics and Composites Vol. 29, (2010).

Google Scholar

[14] I. Zaman, Q.H. Le, H.C. Kuan, N. Kawashima, L. Luong, A. Gerson, J. Ma: Polymer Vol. 52, 497-504 (2011).

DOI: 10.1016/j.polymer.2010.12.007

Google Scholar

[15] Q. Zhao, S.V. Hoa: Journal of Composite Materials Vol. 41, 497-504 (2007).

Google Scholar

[16] J. Chia, K. Hbaieb, and Q.X. Wang: Key Engineering Materials Vols. 334-335, 785-788 (2007).

DOI: 10.4028/www.scientific.net/kem.334-335.785

Google Scholar

[17] J.Y.H. Chia, in: Finite Element Modelling Clay Nanocomposites and Interface Effects on Mechanical Properties (IUTAM Bookseries, Vol. 13, 241-248, 2009).

DOI: 10.1007/978-1-4020-9557-3_25

Google Scholar

[18] M.J. Stevens: Macromolecules Vol. 34, 2710-2718 (2001).

Google Scholar

[19] M.L. Chan, K.T. Lau, T.T. Wong, in: Interfacial Bonding and Mechanism in Nanoclay/Epoxy Composite. Proc. ICCE-17, (2009).

Google Scholar

[20] A.K. Helmy, E.A. Ferreiro, and S.G. deBussetti: Journal of Colloid and Interface Science Vol. 268, 263-265 (2003).

Google Scholar

[21] Y.T. Fu, H. Heinz: Chem. Mater Vol. 22, 1595-1605 (2009).

Google Scholar

[22] Ł. Figiel, C.P. Buckley: Computational Materials Science Vol. 44, 1332-1343 (2009).

Google Scholar

[23] A. Dorigato, S. Morandi, A. Pegoretti: Journal of Composite Materials, in press.

Google Scholar