Influence of Interphase Properties on the Macroscopic Response of Single- and Double-Walled CNT/Epoxy Nanocomposites: A Numerical Study

Article Preview

Abstract:

A concept for improving the impact resistance of carbon fibre reinforced plastic (CFRP) laminates by using a carbon nanotube (CNT)/epoxy surface coating is presented. An initial parametric numerical study shows the effects of interphase properties on the macroscopic stress-strain behaviour of carbon nanotube/epoxy nanocomposites. Finite element (FE) simulations carried out for fully aligned single-walled CNTs (SWCNTs) and double-walled CNTs (DWCNTs) investigated the influence of properties of the polymer/CNT interphase and the interwall phase of DWCNTs. They reveal that a high shear stiffness of the CNT/polymer interphase is essential to take the full advantage of the load-bearing ability of the inner wall of the DWCNT, and thus enhance the mechanical performance of the nanocomposite. Furthermore the interphase shear stress distributions in interwall and CNT/polymer interphase of a DWCNT point out the relationship between CNT/epoxy interphase damage propagation and shear stress in the interwall phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M. (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381, 678-680.

DOI: 10.1038/381678a0

Google Scholar

[2] Cooper, C. A., Young, R. J. and Halsall, M. (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy, Composites Part A: Applied Science and Manufacturing, 32, 401-411.

DOI: 10.1016/s1359-835x(00)00107-x

Google Scholar

[3] Peigney, A., Laurent, Ch., Flahaut, E., Bacsa, R. R. and Rousset, A. (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39, 507–514.

DOI: 10.1016/s0008-6223(00)00155-x

Google Scholar

[4] Yokozeki, T., Iwahori, Y., Ishiwata, S. and Enomoto, K. (2007) Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy, Composites Part A: Applied Science and Manufacturing , 38, 2121-2130.

DOI: 10.1016/j.compositesa.2007.07.002

Google Scholar

[5] Hu, N., Li, Y., Nakamura, T., Katsumata, T., Koshikawa, T. and Arai, M. (2011).

Google Scholar

[6] Wicks, S. S., de Villoria, R. G. and Wardle, B. L. (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes, Composite Science and Technology, 70, 20-28.

DOI: 10.1016/j.compscitech.2009.09.001

Google Scholar

[7] Gojny, F. H., Wichmann, M. H. G., Fiedler, B. and Schulte, K. (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study, Composites Science and Technology, 65, 2300–2313.

DOI: 10.1016/j.compscitech.2005.04.021

Google Scholar

[8] Yu, N., Zhang, Z. H. and He, S. Y. (2008) Fracture toughness and fatigue life of MWCNT/epoxy composites, Materials Science and Engineering: A, 494, 380-384.

DOI: 10.1016/j.msea.2008.04.051

Google Scholar

[9] Lachman, N. and Wagner, D. H. (2010) Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites, Composites Part A: Applied Science and Manufacturing, 41, 1093-1098.

DOI: 10.1016/j.compositesa.2009.08.023

Google Scholar

[10] Ganguli, S., Bhuyan, M., Allie, L. and Aglan, H. (2005) Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy, Journal of Materials Science, 40, 3593-3595.

DOI: 10.1007/s10853-005-2891-x

Google Scholar

[11] Zhang, W., Picu, R. C. and Koratkar, N. (2007) Suppression of fatigue crack growth in carbon nanotube composites, Applied Physics Letters, 91, 193109.

DOI: 10.1063/1.2809457

Google Scholar

[12] Wernik, J. M. and Meguid, S. A. (2010) Recent developments in multifunctional nanocomposites using carbon nanotubes, Applied Mechanics Reviews, 63, 050801.

DOI: 10.1115/1.4003503

Google Scholar

[13] Gojny, F. H., Wichmann, M. H. G., Köpke, U., Fiedler, B. and Schulte, K. (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Composites Science and Technology, 64, 2363-2371.

DOI: 10.1016/j.compscitech.2004.04.002

Google Scholar

[14] Ma, P. C., Siddiqui, N. A., Marom, G. and Kim, J. K. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing, 41, 1345-1367.

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[15] Kelly, A. (1973) Strong solids, 2nd ed., Oxford: Clarendon Press, 228.

Google Scholar

[16] Hull, D. and Clyne, T. W. (1996) An introduction to composite materials, 2nd ed., Cambridge: Cambridge University Press, 31.

Google Scholar

[17] Yakobson, B. I., Campbell, M. P., Brabec, C. J. and Bernholc, J. (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science, 8, 341-348.

DOI: 10.1016/s0927-0256(97)00047-5

Google Scholar

[18] Wang, C. Y. and Zhang, L. C. (2008) An elastic shell model for characterizing single-walled carbon nanotubes, Nanotechnology, 19, 195704.

DOI: 10.1088/0957-4484/19/19/195704

Google Scholar

[19] Ru, C. Q. (2000) Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube, Journal of Applied Physics, 87, 7227–7231.

DOI: 10.1063/1.372973

Google Scholar

[20] Cumings, J. and Zettl, A. (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289, 602-604.

DOI: 10.1126/science.289.5479.602

Google Scholar

[21] Pantano, A., Parks, D. M. and Boyce, M. C., (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes, Journal of the Mechanics and Physics of Solids, 52, 789-821.

DOI: 10.1016/j.jmps.2003.08.004

Google Scholar

[22] Ru, C. Q. (2001) Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips, Journal of Applied Physics, 89, 3426–3433.

DOI: 10.1063/1.1347956

Google Scholar

[23] Pregler, S. K. and Sinnott, S. B. (2006) Molecular dynamics simulations of electron and ion beam irradiation of multiwalled carbon nanotubes: The effects on failure by inner tube sliding, Physical Review B, 73, 224106.

DOI: 10.1103/physrevb.73.224106

Google Scholar