[1]
A.E. Martinelli, D.M.A. Melo, U.T. Bezerra, F.M. Lima, E.P. Marinho, D.M.H. Martinelli, Addition of Polyurethane to Portland Cement, Materials Science Forum, Advanced Powder Technology IV, 498 - 499 (2005) 401-406.
Google Scholar
[2]
L. Kalfayan, Production Enhancement with Acid Stimulation, in, PennWell Corp., 2008, p.270.
Google Scholar
[3]
A.A. Al-Taq, H.A. Nasr-El-Din, T.A. Al-Shafei, A New Technique to Enhance Cement Resistance to Mud Acids, in: 8th European Formation Damage Conference, Society of Petroleum Engineers, Scheveningen, The Netherlands, 2009.
DOI: 10.2118/119994-ms
Google Scholar
[4]
E.P. Motta, C.R. Miranda, S.M.C. Anjos, J.A. Ribeiro, E.C. Jr., Acidizing Wells With Acetic/HF Acid Mixtures to Minimize Cement Dissolution, in: SPE Formation Damage Control Symposium, Society of Petroleum Engineers, Lafayette, Louisiana, 1996.
DOI: 10.2118/31080-ms
Google Scholar
[5]
C.G. Blount, J.L. Brady, D.M. Fife, L.L. Gantt, J. Heusser, M., M.C. Hightower, HCl/HF Acid-Resistant Cement Blend: Model Study and Field Application, SPE Journal of Petroleum Technology, 43 (1991) 226-232.
DOI: 10.2118/19541-pa
Google Scholar
[6]
H.A. Nasr-El-Din, Y.A. Elmarsafawi, A.S. Al-Yami, A Study of Acid Cement Reactions Using the Rotating Disk Apparatus, in: International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, Houston, Texas, U.S.A., 2007.
DOI: 10.2118/106443-ms
Google Scholar
[7]
J.L. Brady, L.L. Gantt, D.M. Fife, D.A. Rich, S.W. Almond, D.A. Ross, Cement Solubility in Acids, in: Low Permeability Reservoirs Symposium, Copyright 1989, Society of Petroleum Engineers Inc., Denver, Colorado, 1989.
DOI: 10.2118/18986-ms
Google Scholar
[8]
J.H.O. Nascimento, A.E. Martinelli, D.M.A. Melo, A.C.V. Nóbrega, D.M.H. Martinelli, E.N.M.G. Pinto, Portland Cement Polyurethane Composites for Cementing Oilwell, Materials Science Forum, Advanced Powder Technology VI, 591-593 (2008) 423-429.
DOI: 10.4028/www.scientific.net/msf.591-593.423
Google Scholar
[9]
J. Monteny, N. De Belie, E. Vincke, W. Verstraete, L. Taerwe, Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete, Cement and Concrete Research, 31 (2001) 1359-1365.
DOI: 10.1016/s0008-8846(01)00565-8
Google Scholar
[10]
N. De Belie, J. Monteny, Resistance of concrete containing styrol acrylic acid ester latex to acids occurring on floors for livestock housing, Cement and Concrete Research, 28 (1998) 1621-1628.
DOI: 10.1016/s0008-8846(98)00135-5
Google Scholar
[11]
Y. Ohama, Polymer-based admixtures, Cement and Concrete Composites, 20 (1998) 189-212.
DOI: 10.1016/s0958-9465(97)00065-6
Google Scholar
[12]
Y. Ohama, T. Kobayashi, K. Takeuchi, K. Nawata, Chemical resistance of polymethyl methacrylate concrete, International Journal of Cement Composites and Lightweight Concrete, 8 (1986) 87-91.
DOI: 10.1016/0262-5075(86)90003-5
Google Scholar
[13]
G. Xiong, X. Chen, G. Li, L. Chen, Sulphuric acid resistance of soluble soda glass-polyvinyl acetate latex-modified cement mortar, Cement and Concrete Research, 31 (2001) 83-86.
DOI: 10.1016/s0008-8846(00)00426-9
Google Scholar
[14]
G.J. Xiong, L.Q. Chen, X.H. Chen, J.Z. Yang, G.Y. Li, Behavior of water glass-polymer hybrid-modified mortars under flowing sulfuric acid solution environment, Cement and Concrete Research, 34 (2004) 665-669.
DOI: 10.1016/j.cemconres.2003.10.016
Google Scholar
[15]
T. Bakharev, J.G. Sanjayan, Y.B. Cheng, Resistance of alkali-activated slag concrete to acid attack, Cement and Concrete Research, 33 (2003) 1607-1611.
DOI: 10.1016/s0008-8846(03)00125-x
Google Scholar
[16]
API, Specification for Cements and Materials for Well Cementing, in, American Petroleum Institute, p.46.
Google Scholar
[17]
API, Recommended Pratice for Testing Well Cementing, in, American Petroleum Institute, p.175.
Google Scholar
[18]
C.R. Miranda, J.S. Gold, Study of Cement Resistance to the Attack of Acid Solutions, in: International Symposium on Oilfield Chemistry, 1997 Copyright 1997, Society of Petroleum Engineers, Inc., Houston, Texas, 1997.
DOI: 10.2118/37225-ms
Google Scholar