[1]
G. Marsh, Next step for automotive materials, Mater.Today 6(4) (2003) 36-64.
Google Scholar
[2]
J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications, JOM 58(11) (2006) 80-86.
DOI: 10.1007/s11837-006-0234-2
Google Scholar
[3]
J. Bolton, The potential of plant fibres as crops for industrial uses, Outlook on Agriculture 24(2) (1995) 85-89.
DOI: 10.1177/003072709502400204
Google Scholar
[4]
A.K. Mohanty, M. Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J.Polym.Environ. 10 (2002) 19-26.
DOI: 10.4324/9781315793245-107
Google Scholar
[5]
J.R.M. d'Almeida, Potencialities of "new" lignocellulosic fibres, Proceedings of the V International Conference on Science and Technology of Composite Materials, San Sebástian – Spain, pp.33-40, 2009.
Google Scholar
[6]
Y. Li, Y.-W. Mai, L. Ye, Sisal and its composites: a review of recent developments, Comp. Sci. Technol. 60 (2000) 2037-2055.
DOI: 10.1016/s0266-3538(00)00101-9
Google Scholar
[7]
A.K. Mohanty, M. Misra, Studies on jute composites – a literature review, Polym.-Plast. Technol. Eng. 34(5) (1995) 729-792.
Google Scholar
[8]
K.O. Reddy, G.S. Reddy, C.U. Maheswari, A.V. Rajulu, K.M. Rao, Structural characterization of coconut tree leaf sheath fiber reinforcement, J. Fores. Res. 21(1) (2010) 53-58.
DOI: 10.1007/s11676-010-0008-0
Google Scholar
[9]
J. Mora-Urpí, J.C. Weber, C.R. Clement, Peach palm. Bactris gasipaes Kunth. Gatersleben/International Plant Genetic Resources Institute, Rome, 1997.
Google Scholar
[10]
J.R. Alvarado, J.B. da Veiga, A.C. de Santana, Quantification of carbon storage in land-use systems of José Crespo and Castillo District, Peru, Arch. Latinoam. Prod. Anim. 16(3) (2008) 139-152. (in Portuguese)
Google Scholar
[11]
ESA 21 – Environmental Science Activities for the 21st Century: Trees and carbon, information on http://esa21.kennesaw.edu/activities/trees-carbon/tress-carbon.pdf.
Google Scholar
[12]
R.S. Bacellar, J.R.M. d'Almeida, Microstructural characterization and evaluation of thermal, mechanical and wear properties of pupunha (Bactris gasipaes) pseudostem, Polym. Renew. Resour. 1(3) (2010) 123-142.
DOI: 10.1177/204124791000100301
Google Scholar
[13]
B.C. Temer, Development and characterization of boards manufactured with fibers from Bactris gasipaes palm, M.Sc. Dissertation, Pontifícia Universidade Católica do Rio de Janeiro, Brazil, 2010. (in Portuguese)
DOI: 10.29289/2594539420180000232
Google Scholar
[14]
A.P. Longchamps, A.P.; A.R.R. da Silva, J.R.M. d'Almeida, Pejibaye fiber-reinforced PP matrix composites: to be submitted to Polymers From Renewable Resources (2011).
Google Scholar
[15]
A.A. Habas-Ulloa, J.R.M. d'Almeida, J.R.M., J.-P. Habas, Creep behavior of high density polyethylene after aging in contact with different oil derivates, Polym. Eng. Sci. 50(11) (2010) 2122–2130.
DOI: 10.1002/pen.21743
Google Scholar
[16]
H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity. An Introduction, Springer Science, New York, 2008.
Google Scholar
[17]
L.H. de Carvalho, G.C. de Souza, J.R.M. d'Almeida, Hybrid jute/cotton fabric–polyester composites: effect of fabric architecture, lamina stacking sequence and weight fraction of jute fibres on tensile strength, Plast. Rubber Comp. 36 (2007) 155–161.
DOI: 10.1179/174328907x191396
Google Scholar
[18]
K. Renner, J. Móczó, P. Suba, B. Pukánszky, Micromechanical deformations in PP/lignocellulosic filler composites: Effect of matrix properties, Comp. Sci. Technol. 70 (2010) 1141–1147.
DOI: 10.1016/j.compscitech.2010.02.029
Google Scholar