[1]
A. Bentur , S. Mindess, Fiber Reinforced Cementitious Composites. US: Elsevier Science Publishing Ltd, (1990).
Google Scholar
[2]
A. Pye, A Review of Asbestos substitute materials in industrial applications. J Hazard Mater 3 (1979)125-147.
Google Scholar
[3]
E.Willden, A guide to the art of asbestos cement, London: J. E. Williden Publishers (1986).
Google Scholar
[4]
K. Azuma, I. Uchiyama, Y. Chiba, J.Okumura, Mesothelioma risk and environmental exposure to asbestos: Past and future trends in Japan, International Journal of Occupational and Environmental Health 15 (2009) 166-172.
DOI: 10.1179/oeh.2009.15.2.166
Google Scholar
[5]
S. Kumagai, N.Kurumatani, Asbestos fiber concentration in the area surrounding a former asbestos cement plant and excess mesothelioma deaths in residents, American Journal of Industrial Medicine 52 (2009) 790-798.
DOI: 10.1002/ajim.20743
Google Scholar
[6]
S.Ikai, J. Reicher, A. Rodrigues, V. Zampieri, Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process, Construction and Building Materials 24 (2010)171-180.
DOI: 10.1016/j.conbuildmat.2009.06.019
Google Scholar
[7]
D.Kim, A.Naaman, E. El-Tawil, Comparative flexural behavior of four fibers reinforced cementitious composites, Cem Concer Compos 30 (2008) 917-928.
DOI: 10.1016/j.cemconcomp.2008.08.002
Google Scholar
[8]
C. Leung, N. Ybanez, Pull-out of inclined flexible fiber in cementitious composite, ASCE J Eng Mech 123 (1997) 239-246.
DOI: 10.1061/(asce)0733-9399(1997)123:3(239)
Google Scholar
[9]
M. Andrzej, Cement-Based Composites Second Edition. New York: Taylor & Francis (2009).
Google Scholar
[10]
A.Peled, E. Zaguri, G. Marom, Bonding characteristics of multifilament polymer yarns and cement matrices, Composites Part A 39 (2008) 930–939.
DOI: 10.1016/j.compositesa.2008.03.012
Google Scholar
[11]
S. Singh, A. Shukla, R.Brown, Pullout behavior of polypropylene fibers from cementitious matrix, Cem Concr Res 34 (2004) 1919–1925.
DOI: 10.1016/j.cemconres.2004.02.014
Google Scholar
[12]
A. Bentur, Role of interfaces in controlling durability of fiber-reinforced cements, J Mater Civ Eng 12 (2000) 2-7.
DOI: 10.1061/(asce)0899-1561(2000)12:1(2)
Google Scholar
[13]
A.Bentur, A.Peled, D.Yankelevsky, Enhanced bonding of low modulus polymer fibers–cement matrix by means of crimped geometry, Cem. Concr Res 27, (1997)1099–1111.
DOI: 10.1016/s0008-8846(97)00088-4
Google Scholar
[14]
V.Li, C.Wu, S.Wang, A.Ogawa, T.Saito, Interface tailoring for strain-hardening PVA-ECC, ACI Mater Journal 99 (2002) 463-472.
Google Scholar
[15]
H.Wu, V.Li, Fiber/cement interface tailoring with plasma treatment, Cem Concer Compos 21 (1999) 205–212.
Google Scholar
[16]
B. Felekoglu, K. Tosun, B.Baradan, A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites. J Mater Process Technol 209 (2009) 5133–5144.
DOI: 10.1016/j.jmatprotec.2009.02.015
Google Scholar
[17]
V.Li, Y.Chan, H.Wu, Interface strengthening mechanisms in polymeric fiber reinforced cementitious composites, In: Proc. Int. Symp., Brittle Matrix Composites. Warsaw: IKE and Woodhead Publ, 1994. p.7 – 16.
Google Scholar
[18]
T. Kanda, V.Li, Effect of fiber strength and fiber-matrix interface on crack bridging in cement composites, J Eng Mech 3 (1999) 290-299.
DOI: 10.1061/(asce)0733-9399(1999)125:3(290)
Google Scholar
[19]
B. Mobasher, C.Li, Effect of interfacial properties on the crack propagation in cementitious composites. Adv Cem Based Mater 4 (1996) 93–105.
DOI: 10.1016/s1065-7355(96)90078-4
Google Scholar
[20]
Y. Chan, V.Li, Age effect on the characteristics of fiber/cement interfacial properties. J Mater Sci 32 (1997)5287-5292.
Google Scholar
[21]
B. Cotterell, Y. Mai, Fracture mechanics of cementitious materials. Chapman and Hall (1996).
Google Scholar
[22]
T. Kanda, V. Li, Interface property and apparent strength of a high strength hydrophilic fiber in cement matrix. ASCE J Mater Civ Eng 10 (1998) 5-13.
DOI: 10.1061/(asce)0899-1561(1998)10:1(5)
Google Scholar