Effect of Inorganic Content on the Performance of Anticorrosive Hybrid Sol-Gel Coated EN AW-6063 Alloy

Article Preview

Abstract:

The organic-inorganic hybrid sol-gel films have been reported as an effective anti-corrosion and environmentally friendly alternative to Cr(VI) pre-treatment for aluminium alloys. The sol-gel process used to obtain these coatings allows the variation of the different synthesis parameters to achieve coatings with optimized properties. In this work, hybrid films with different Zr/Si ratios were synthesized from glycidoxypropyltrimethoxysilane (GPTMS) and zirconium n-propoxide (TPOZ) precursors. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate the corrosion behaviour of coated aluminium specimens in 0.5 M NaCl solution. The morphology and chemical structure of the hybrid coatings prepared were studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), Fourier Transformed Infrared Spectroscopy (FTIR) and Thermo Gravimetric Analysis (TGA). It was found that increasing Zr/Si ratio leads to a more cross linked inorganic network, resulting in higher initial coatings resistance, but may turn coatings more hydrophilic, prone to rapid degradation in water, due to a less connected organic network. Consequently, the best anticorrosive performance derives from the balance between the two opposite trends and it was achieved with Zr/Si molar ratio of 0.25.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

745-750

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. L. Zheludkevich, I. Miranda Salvado, M. G. S. Ferreira, Sol–gel coatings for corrosion protection of metals, J. Mater. Chem. 15 (2005) 5099-5111

DOI: 10.1039/b419153f

Google Scholar

[2] D. Wang, G. P. Bierwagen, Sol–gel coatings on metals for corrosion protection, Progress in Organic Coatings 64 (2009) 327–338

DOI: 10.1016/j.porgcoat.2008.08.010

Google Scholar

[3] N. C. Rosero-Navarro, S. A. Pellice, Y. Castro, M. Aparicio, A. Durán, Improved corrosion resistance of AA2024 alloys through hybrid organic–inorganic sol–gel coatings produced from sols with controlled polymerisation, Surface & Coatings Technology 203 (2009) 1897–(1903)

DOI: 10.1016/j.surfcoat.2009.01.019

Google Scholar

[4] N. Pirhady Tavandashti, S. Sanjabi, T. Shahrabi, Corrosion protection evaluation of silica/epoxy hybrid nanocomposite coatings to AA2024, Progress in Organic Coatings 65 (2009) 182–186

DOI: 10.1016/j.porgcoat.2008.10.010

Google Scholar

[5] K. H. Wu, M. C. Li, C. Chang, C. C. Yang, Characterization and Corrosion Resistance of Organically Modified Silicate/MO2 (M = Zr, Ti, or Ce) Hybrid Coatings on a 6061-T6 Aluminum Alloy, J Polym Sci Part A : Polym Chem , 44 (2006) 335-342

DOI: 10.1002/pola.21094

Google Scholar

[6] M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M. Miranda Salvado, M.G.S. Ferreira, Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3, Surface & Coatings Technology 200 (2006) 3084– 3094

DOI: 10.1016/j.surfcoat.2004.09.007

Google Scholar

[7] S.K. Poznyak, M.L. Zheludkevich, D. Raps, F. Gammel, K.A. Yasakau, M.G.S. Ferreira, Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024, Progress in Organic Coatings 62 (2008) 226–235

DOI: 10.1016/j.porgcoat.2007.12.004

Google Scholar

[8] M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M. Miranda Salvado, M.G.S. Ferreira, Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3 Corrosion protection performance, Electrochimica Acta 51 (2005) 208–217

DOI: 10.1016/j.electacta.2005.04.021

Google Scholar

[9] D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira, H. Möhwald, Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Adv. Mater. 2006, 18, 1672–1678

DOI: 10.1002/adma.200502053

Google Scholar

[10] N. Pirhady Tavandashti, S. Sanjabi, Corrosion study of hybrid sol–gel coatings containing boehmite nanoparticles loaded with cerium nitrate corrosion inhibitor, Progress in Organic Coatings 69 (2010) 384–39

DOI: 10.1016/j.porgcoat.2010.07.012

Google Scholar

[11] N.C. Rosero-Navarro, P. Figiel, R. Jedrezejewski, A. Biedunkiewicz, Y. Castro, M. Aparicio, S. A. Pellice, A. Durán, Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel coatings, J. Sol-Gel Sci. Technol. 54 (2010), 301-311

DOI: 10.1007/s10971-010-2194-9

Google Scholar

[12] Z. Feng, Y. Liu, G.E. Thompson, P. Skeldon, Sol–gel coatings for corrosion protection of 1050 aluminium alloy, Electrochimica Acta 55 (2010) 3518–3527

DOI: 10.1016/j.electacta.2010.01.074

Google Scholar

[13] M. S Olivier, K. Y. Blohowiak, R. H Dauskardt, Molecular structure and fracture properties of ZrOx/Epoxysilane hybrid films, J. Sol-Gel Sci. and Technol. 55 (2010) 360-368

DOI: 10.1007/s10971-010-2262-1

Google Scholar

[14] Y. Ivanova, T.S. Gerganova, Y. Dimitriev, I.M. Miranda Salvado, M.H.V. Fernandes, Nanostructured hybrid materials as precursors for synthesis of nanocoposites in Si–O–C–N–Zr system, Thin Solid Films 515 (2006) 271 – 278

DOI: 10.1016/j.tsf.2005.12.080

Google Scholar

[15] J.-Y. Bae, S. C. Yang, J. H. Jin, K. H. Jung, J.-S. Kim, B.-S. Bae, Fabrication of transparent methacrylate zirconium siloxane hybrid materials using sol–gel synthesized oligosiloxane resin, J Sol-Gel Sci Technol

DOI: 10.1007/s10971-010-2363-x

Google Scholar

[16] An infrared Spectroscopy Atlas for the Coatings Industry – 4th Ed., Vol.s I and II, D. R. Brezinski Ed., Federation of Societies for Coatings Technology, Philadelphia, (1991)

Google Scholar