[1]
K. Yoshida, H. Morigami, Thermal properties of diamond/copper composite material, Microelect. Reliab. 44 (2004) 303.
DOI: 10.1016/s0026-2714(03)00215-4
Google Scholar
[2]
http: /www. advanceddiamond. com/productsheathru. html.
Google Scholar
[3]
Th. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci . Eng. A 475 (2008) 39.
DOI: 10.1016/j.msea.2006.12.146
Google Scholar
[4]
R. Andreani, M. Gasparotto, Overview of fusion nuclear technology in Europe, Fusion Eng. Des. 61/62 (2002) 27.
DOI: 10.1016/s0920-3796(02)00110-2
Google Scholar
[5]
T.S. Srivatsan, B.G. Ravi, A.S. Naruka, M. Petraroli, R. Kalyanaraman, T.S. Sudarshan, Influence of consolidation parameters on the microstructure and hardness of bulk copper samples made from nanopowders, Mater. Des. 23 (2002) 291.
DOI: 10.1016/s0261-3069(01)00078-4
Google Scholar
[6]
P.A. Carvalho, I. Fonseca, M.T. Marques, J.B. Correia, R. Vilar, Transmission electron microscopy study of copper-carbon nanocomposite, Mater. Sci. Tech. 22 (2006) 673.
DOI: 10.1179/174328406x84058
Google Scholar
[7]
D. Nunes, J.B. Correia, P.A. Carvalho, N. Shohoji, H. Fernandes, C. Silva, L.C. Alves, K. Hanada, E. Ōsawa, Production of Cu/Diamond composites for first-wall heat sinks, Fusion Eng. Des. 86 (2011) 2589.
DOI: 10.1016/j.fusengdes.2011.01.085
Google Scholar
[8]
D. Nunes, V. Livramento, R. Mateus, J.B. Correia, L.C. Alves, M. Vilarigues, P.A. Carvalho, Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization, Mater. Sci. Eng. A 528 (2011) 8610.
DOI: 10.1016/j.msea.2011.08.048
Google Scholar
[9]
A.V. Gubarevich, S. Usuba, Y. Kakudate, A. Tanaka, O. Odawara, Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate, Diamond Relat. Mater. 14 (2005) 1549.
DOI: 10.1016/j.diamond.2005.04.001
Google Scholar
[10]
A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul', E. Ōsawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration, Carbon 43 (2005) 1722.
DOI: 10.1016/j.carbon.2005.02.020
Google Scholar
[11]
E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, M.A. Yagovkina, A.Y. Vul', M. Takahashi, M. Inakuma, M. Ozawa, E. Ōsawa, A stable suspension of single ultrananocrystalline diamond particles, Diamond Relat. Mater. 14 (2005) 1765.
DOI: 10.1016/j.diamond.2005.08.057
Google Scholar
[12]
D. Nunes, V. Livramento, N. Shohoji, H. Fernandes, C. Silva, J.B. Correia, P.A. Carvalho, Copper-μDiamond nanostructured Composites, Phys. Scr. T145 (2011) 014069.
DOI: 10.1088/0031-8949/2011/t145/014069
Google Scholar
[13]
K. Hanada, K. Yamamoto, T. Taguchi, E. Ōsawa, M. Inakuma,V. Livramento, J.B. Correia, N. Shohoji, Further studies on copper nanocomposite with dispersedsingle-digit-nanodiamond particles, Diamond Relat. Mater. 16 (2007) (2054).
DOI: 10.1016/j.diamond.2007.07.008
Google Scholar
[14]
D. Nunes, V. Livramento, J.B. Correia, K. Hanada, P.A. Carvalho, R. Mateus, N. Shohoji, H. Fernandes, C. Silva, E. Alves, E. Ōsawa, Consolidation of Cu-nDiamond nanocomposites: hot extrusion vs spark plasma sintering, Mater. Sci. Forum 636-637 (2010).
DOI: 10.4028/www.scientific.net/msf.636-637.682
Google Scholar
[15]
M. Zhao, J.C. Li, Q. Jiang, Hall-Petch relationship in nanometer size range, J. Alloys Compd. 361 (2003) 160.
DOI: 10.1016/s0925-8388(03)00415-8
Google Scholar
[16]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427.
Google Scholar
[17]
K.S. Siow, A.A.O. Tay, P. Oruganti, Mechanical properties of nanocrystalline copper and nickel, Mater. Sci. Tech. 20 (2004) 285.
Google Scholar
[18]
V.Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer, The study of grain size dependence of yield stress of copper for a wide grain size range, Acta Metall. Mater. 42 (1994) 3539.
DOI: 10.1016/0956-7151(94)90486-3
Google Scholar