Multiscale Copper-µDiamond Nanostructured Composites

Article Preview

Abstract:

Nanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with mDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and mDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

925-930

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Yoshida, H. Morigami, Thermal properties of diamond/copper composite material, Microelect. Reliab. 44 (2004) 303.

DOI: 10.1016/s0026-2714(03)00215-4

Google Scholar

[2] http: /www. advanceddiamond. com/productsheathru. html.

Google Scholar

[3] Th. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci . Eng. A 475 (2008) 39.

DOI: 10.1016/j.msea.2006.12.146

Google Scholar

[4] R. Andreani, M. Gasparotto, Overview of fusion nuclear technology in Europe, Fusion Eng. Des. 61/62 (2002) 27.

DOI: 10.1016/s0920-3796(02)00110-2

Google Scholar

[5] T.S. Srivatsan, B.G. Ravi, A.S. Naruka, M. Petraroli, R. Kalyanaraman, T.S. Sudarshan, Influence of consolidation parameters on the microstructure and hardness of bulk copper samples made from nanopowders, Mater. Des. 23 (2002) 291.

DOI: 10.1016/s0261-3069(01)00078-4

Google Scholar

[6] P.A. Carvalho, I. Fonseca, M.T. Marques, J.B. Correia, R. Vilar, Transmission electron microscopy study of copper-carbon nanocomposite, Mater. Sci. Tech. 22 (2006) 673.

DOI: 10.1179/174328406x84058

Google Scholar

[7] D. Nunes, J.B. Correia, P.A. Carvalho, N. Shohoji, H. Fernandes, C. Silva, L.C. Alves, K. Hanada, E. Ōsawa, Production of Cu/Diamond composites for first-wall heat sinks, Fusion Eng. Des. 86 (2011) 2589.

DOI: 10.1016/j.fusengdes.2011.01.085

Google Scholar

[8] D. Nunes, V. Livramento, R. Mateus, J.B. Correia, L.C. Alves, M. Vilarigues, P.A. Carvalho, Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization, Mater. Sci. Eng. A 528 (2011) 8610.

DOI: 10.1016/j.msea.2011.08.048

Google Scholar

[9] A.V. Gubarevich, S. Usuba, Y. Kakudate, A. Tanaka, O. Odawara, Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate, Diamond Relat. Mater. 14 (2005) 1549.

DOI: 10.1016/j.diamond.2005.04.001

Google Scholar

[10] A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul', E. Ōsawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration, Carbon 43 (2005) 1722.

DOI: 10.1016/j.carbon.2005.02.020

Google Scholar

[11] E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, M.A. Yagovkina, A.Y. Vul', M. Takahashi, M. Inakuma, M. Ozawa, E. Ōsawa, A stable suspension of single ultrananocrystalline diamond particles, Diamond Relat. Mater. 14 (2005) 1765.

DOI: 10.1016/j.diamond.2005.08.057

Google Scholar

[12] D. Nunes, V. Livramento, N. Shohoji, H. Fernandes, C. Silva, J.B. Correia, P.A. Carvalho, Copper-μDiamond nanostructured Composites, Phys. Scr. T145 (2011) 014069.

DOI: 10.1088/0031-8949/2011/t145/014069

Google Scholar

[13] K. Hanada, K. Yamamoto, T. Taguchi, E. Ōsawa, M. Inakuma,V. Livramento, J.B. Correia, N. Shohoji, Further studies on copper nanocomposite with dispersedsingle-digit-nanodiamond particles, Diamond Relat. Mater. 16 (2007) (2054).

DOI: 10.1016/j.diamond.2007.07.008

Google Scholar

[14] D. Nunes, V. Livramento, J.B. Correia, K. Hanada, P.A. Carvalho, R. Mateus, N. Shohoji, H. Fernandes, C. Silva, E. Alves, E. Ōsawa, Consolidation of Cu-nDiamond nanocomposites: hot extrusion vs spark plasma sintering, Mater. Sci. Forum 636-637 (2010).

DOI: 10.4028/www.scientific.net/msf.636-637.682

Google Scholar

[15] M. Zhao, J.C. Li, Q. Jiang, Hall-Petch relationship in nanometer size range, J. Alloys Compd. 361 (2003) 160.

DOI: 10.1016/s0925-8388(03)00415-8

Google Scholar

[16] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427.

Google Scholar

[17] K.S. Siow, A.A.O. Tay, P. Oruganti, Mechanical properties of nanocrystalline copper and nickel, Mater. Sci. Tech. 20 (2004) 285.

Google Scholar

[18] V.Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer, The study of grain size dependence of yield stress of copper for a wide grain size range, Acta Metall. Mater. 42 (1994) 3539.

DOI: 10.1016/0956-7151(94)90486-3

Google Scholar