Degradation of Tannic Acid Powered by TiO2 Nanoparticles

Article Preview

Abstract:

The wastewater from the coir, pharmaceutical, leather, paper and pulp industries is contaminated with water-soluble poly phenolic compounds (tannins). Among various tannins, tannic acid is a typical hydrolysable tannin prevalent in wastewater. The degradation of tannic acid using TiO2 nanoparticles as photocatalyst was investigated. The effect of catalyst concentration, pH of aqueous suspension and also electron acceptors such as hydrogen peroxide (H2O2) and ozone (O3) on the degradation of tannic acid was studied. The degradation of tannic acid was found to be more efficient and complete in the presence of UV/TiO2/O3 compared to UV/TiO2/H2O2. The kinetics of degradation was observed to follow first order rate equation which indicates that the mineralization process is diffusion controlled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-126

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiOn surfaces: Principles, Mechanisms and selected results, Chem. Rev., 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[3] M. R. Hofmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.

Google Scholar

[4] A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A. Chem., 108 (1997)1-35.

Google Scholar

[5] F. Kiriakidou, D.I. Kondarides, X.E. Verykios, The effect of operational parameters and TiO2 doping on the photocatalytic degradation of azo- dyes, Catal. Today, 54 (1999) 119-130.

DOI: 10.1016/s0920-5861(99)00174-1

Google Scholar

[6] F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2 assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal. B, 15 (1998).

DOI: 10.1016/s0926-3373(97)00043-x

Google Scholar

[7] J. Kry´sa, M. Keppert, G. Waldner, J. Jirkovsky, Immobilized particulate TiO2 photocatalysts for degradation of organic pollutants: Effect of layer thickness, Electrochim. Acta, 50 (2005) 5255-5260.

DOI: 10.1016/j.electacta.2005.01.054

Google Scholar

[8] N. Serpone, E. Pelizzetti, Photocatalysis—Fundamentals and Applications, Wiley, NewYork, NJ (1989).

Google Scholar

[9] D.F. Ollis, H. Al-Ekabi, Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam, The Netherlands, (1993).

Google Scholar

[10] Paul T. Anastas, Lauren G. Heine, Tracy C. Williamson, Green chemical syntheses and processes, chapter 18, ACS symposium series, 767 (2000) 217-228.

DOI: 10.1002/1521-3757(20011203)113:23<4640::aid-ange4640>3.0.co;2-u

Google Scholar

[11] A.R. Khataeea, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. mol. Catalysis A: Chemical, 328 (2010) 8-26.

DOI: 10.1016/j.molcata.2010.05.023

Google Scholar

[12] X. Wang, J.C. Yu, P. Liu, X. Wang, W. Su, X. Fu, Probing of photocatalytic surface sites on SO42-/ TiO2 solid acids by insitu FT- IR spectroscopy a pyridine adsorption, J. Photochem. Photobiol. A. Chem., 179 (2006) 339-347.

DOI: 10.1016/j.jphotochem.2005.09.007

Google Scholar

[13] M. Zheng, M. Gu, Y. Jin, G. Jin, Preparation, structure and properties of TiO2- PVP hybrid film, Mater. Sci. Eng. B, 77 (1) ( 2000) 55-59.

DOI: 10.1016/s0921-5107(00)00465-7

Google Scholar

[14] M.N. Pons, A. Alinsafi, F. Evenou, E. M. Abdulkarim, O. Zahra, A. Benhanmou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis, Dyes and Pigments, 74 (2007) 439-445.

DOI: 10.1016/j.dyepig.2006.02.024

Google Scholar

[15] K. Tenakone, K.G.U. Wijayantha, Heavy metal extraction from aqueous medium with an immobilized TiO2 photocatalyst and a solid sacrificial agent, J. Photochem. Phoobiol. A. Chem., 113 (1998) 89-92.

DOI: 10.1016/s1010-6030(97)00304-3

Google Scholar

[16] S. Liao, H. Donggen, D. Yu, Y. Su, G. Yuan, Preparation and characterization of ZnO/ TiO2, SO42-/ ZnO/ TiO2 photocatalyst and their properties, J. Photochem and Photobiol.A. Chem., 168 (2004) 7-13.

DOI: 10.1016/j.jphotochem.2004.05.010

Google Scholar

[17] J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures- of- merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems. Pure Appl. Chem., 73(4) (2001) 627-637.

DOI: 10.1351/pac200173040627

Google Scholar

[18] T.S. Anirudhan. and M. Ramachandran., Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay, J. Colloid Interface Sci., 299 (2006) 116-124.

DOI: 10.1016/j.jcis.2006.01.056

Google Scholar

[19] E. De Nicola, S. Meric, M. Gallo, M. Iaccarino, C. Della Rocca, G. Lofrano, T. Russo, G. Pagano., Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth, Environ. Pollut., 146 (2007) 46-54.

DOI: 10.1016/j.envpol.2006.06.018

Google Scholar

[20] W.W. Li, X.D. Li, K. M. Zeng, Aerobic biodegradation kinetics of tannic acid in activated sludge system, Biochem. Eng. J., 43 (2009) 142-148.

DOI: 10.1016/j.bej.2008.09.010

Google Scholar

[21] D.H. Lin, B. Xing, Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ. Sci. Technol., 42(15) (2008) 5917-5923.

DOI: 10.1021/es800329c

Google Scholar

[22] J.H. An, S. Dultz, Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties, Appl. Clay. Sci., 36 (2007) 256-264.

DOI: 10.1016/j.clay.2006.11.001

Google Scholar

[23] J. Wang, A. Li, L. Xu, Y. Zhou, Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal, J. Hazard. Mater., 169 (2009) 794-800.

DOI: 10.1016/j.jhazmat.2009.04.013

Google Scholar

[24] Z. Varanka, I. Rojik, J. Nemcsok, M. Abraham, Biochemical and morphological changes in carp (Cyprinus carpio L. ) liver following exposure to copper sulfate and tannic acid, Comp. Biochem. Physiol. C, 128 (2001) 467-478.

DOI: 10.1016/s1532-0456(01)00166-1

Google Scholar

[25] B. Singh, T.K. Bhat, O. P. Sharma, Biodegradation of tannic acid in an in vitro ruminal system, Livest. Prod. Sci., 68 (2001) 259-262.

DOI: 10.1016/s0301-6226(00)00227-x

Google Scholar

[26] A.D. Van Diepeningen, A.J. M. Debets, J. Varga, M.V.D. Gaag, K. Swart, R.F. Hoekstra, Efficient degradation of tannic acid by black Aspergillus species, Mycol. Res., 108 (2004) 919-925.

DOI: 10.1017/s0953756204000747

Google Scholar

[27] M.B. Cunha-Santino, I. Bianchini Jr, L.E.F. Serrano, Aerobic and anaerobic degradation of tannic acid on water samples from Monjolinho reservoir (São Carlos, SP, Brazil), Brazil. J. Biol., 62 (2002) 585-590.

DOI: 10.1590/s1519-69842002000400004

Google Scholar

[28] J. M. Dimitric-Markovic, U.B. Mioc, J.M. Baranac, Z.P. Nedic. A study of the IR spectra of the co-pigments of malvin chloride with organic acids. J. Serb. Chem. Soc., 66 (7) (2001) 451-462.

DOI: 10.2298/jsc0107451d

Google Scholar

[29] P.A. Connor, K.D. Dobson, A.J. McQuillan. Infrared spectroscopy of the TiO2 aqueous solution interface. Langmuir 15 (1999) 2402-2408.

DOI: 10.1021/la980855d

Google Scholar

[30] L.K. El-Gabry, M.M. El Zawahry. Effect of tannic acid on the dyeing process of nylon 6 fabric with cationic dye. RJTA, 12(4) (2008) 21-30.

DOI: 10.1108/rjta-12-04-2008-b003

Google Scholar

[31] S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Photodegradation of 2- naphthol in water by artificial light illumination using TiO2 photocatalyst: Identification of intermediates and the reaction pathway, Applied Catalysis A: General, 334 (2008).

DOI: 10.1016/j.apcata.2007.09.034

Google Scholar

[32] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution - kinetics, mineralization and reaction, Chem. Eng. J., 125 (2006) 59-66.

DOI: 10.1016/j.cej.2006.08.004

Google Scholar

[33] S. Li, D. Bejan, M. S McDowell., N.J. Bunce, Mixed first and zero order kinetics in the electrooxidation of sulamethoxazole at a boron- doped diamond (BDD) anode, J Appl. Electrochem., 38 (2008) 151-159.

DOI: 10.1007/s10800-007-9413-2

Google Scholar