[1]
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiOn surfaces: Principles, Mechanisms and selected results, Chem. Rev., 95 (1995) 735-758.
DOI: 10.1021/cr00035a013
Google Scholar
[3]
M. R. Hofmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
Google Scholar
[4]
A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A. Chem., 108 (1997)1-35.
Google Scholar
[5]
F. Kiriakidou, D.I. Kondarides, X.E. Verykios, The effect of operational parameters and TiO2 doping on the photocatalytic degradation of azo- dyes, Catal. Today, 54 (1999) 119-130.
DOI: 10.1016/s0920-5861(99)00174-1
Google Scholar
[6]
F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2 assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal. B, 15 (1998).
DOI: 10.1016/s0926-3373(97)00043-x
Google Scholar
[7]
J. Kry´sa, M. Keppert, G. Waldner, J. Jirkovsky, Immobilized particulate TiO2 photocatalysts for degradation of organic pollutants: Effect of layer thickness, Electrochim. Acta, 50 (2005) 5255-5260.
DOI: 10.1016/j.electacta.2005.01.054
Google Scholar
[8]
N. Serpone, E. Pelizzetti, Photocatalysis—Fundamentals and Applications, Wiley, NewYork, NJ (1989).
Google Scholar
[9]
D.F. Ollis, H. Al-Ekabi, Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam, The Netherlands, (1993).
Google Scholar
[10]
Paul T. Anastas, Lauren G. Heine, Tracy C. Williamson, Green chemical syntheses and processes, chapter 18, ACS symposium series, 767 (2000) 217-228.
DOI: 10.1002/1521-3757(20011203)113:23<4640::aid-ange4640>3.0.co;2-u
Google Scholar
[11]
A.R. Khataeea, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. mol. Catalysis A: Chemical, 328 (2010) 8-26.
DOI: 10.1016/j.molcata.2010.05.023
Google Scholar
[12]
X. Wang, J.C. Yu, P. Liu, X. Wang, W. Su, X. Fu, Probing of photocatalytic surface sites on SO42-/ TiO2 solid acids by insitu FT- IR spectroscopy a pyridine adsorption, J. Photochem. Photobiol. A. Chem., 179 (2006) 339-347.
DOI: 10.1016/j.jphotochem.2005.09.007
Google Scholar
[13]
M. Zheng, M. Gu, Y. Jin, G. Jin, Preparation, structure and properties of TiO2- PVP hybrid film, Mater. Sci. Eng. B, 77 (1) ( 2000) 55-59.
DOI: 10.1016/s0921-5107(00)00465-7
Google Scholar
[14]
M.N. Pons, A. Alinsafi, F. Evenou, E. M. Abdulkarim, O. Zahra, A. Benhanmou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis, Dyes and Pigments, 74 (2007) 439-445.
DOI: 10.1016/j.dyepig.2006.02.024
Google Scholar
[15]
K. Tenakone, K.G.U. Wijayantha, Heavy metal extraction from aqueous medium with an immobilized TiO2 photocatalyst and a solid sacrificial agent, J. Photochem. Phoobiol. A. Chem., 113 (1998) 89-92.
DOI: 10.1016/s1010-6030(97)00304-3
Google Scholar
[16]
S. Liao, H. Donggen, D. Yu, Y. Su, G. Yuan, Preparation and characterization of ZnO/ TiO2, SO42-/ ZnO/ TiO2 photocatalyst and their properties, J. Photochem and Photobiol.A. Chem., 168 (2004) 7-13.
DOI: 10.1016/j.jphotochem.2004.05.010
Google Scholar
[17]
J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures- of- merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems. Pure Appl. Chem., 73(4) (2001) 627-637.
DOI: 10.1351/pac200173040627
Google Scholar
[18]
T.S. Anirudhan. and M. Ramachandran., Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay, J. Colloid Interface Sci., 299 (2006) 116-124.
DOI: 10.1016/j.jcis.2006.01.056
Google Scholar
[19]
E. De Nicola, S. Meric, M. Gallo, M. Iaccarino, C. Della Rocca, G. Lofrano, T. Russo, G. Pagano., Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth, Environ. Pollut., 146 (2007) 46-54.
DOI: 10.1016/j.envpol.2006.06.018
Google Scholar
[20]
W.W. Li, X.D. Li, K. M. Zeng, Aerobic biodegradation kinetics of tannic acid in activated sludge system, Biochem. Eng. J., 43 (2009) 142-148.
DOI: 10.1016/j.bej.2008.09.010
Google Scholar
[21]
D.H. Lin, B. Xing, Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ. Sci. Technol., 42(15) (2008) 5917-5923.
DOI: 10.1021/es800329c
Google Scholar
[22]
J.H. An, S. Dultz, Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties, Appl. Clay. Sci., 36 (2007) 256-264.
DOI: 10.1016/j.clay.2006.11.001
Google Scholar
[23]
J. Wang, A. Li, L. Xu, Y. Zhou, Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal, J. Hazard. Mater., 169 (2009) 794-800.
DOI: 10.1016/j.jhazmat.2009.04.013
Google Scholar
[24]
Z. Varanka, I. Rojik, J. Nemcsok, M. Abraham, Biochemical and morphological changes in carp (Cyprinus carpio L. ) liver following exposure to copper sulfate and tannic acid, Comp. Biochem. Physiol. C, 128 (2001) 467-478.
DOI: 10.1016/s1532-0456(01)00166-1
Google Scholar
[25]
B. Singh, T.K. Bhat, O. P. Sharma, Biodegradation of tannic acid in an in vitro ruminal system, Livest. Prod. Sci., 68 (2001) 259-262.
DOI: 10.1016/s0301-6226(00)00227-x
Google Scholar
[26]
A.D. Van Diepeningen, A.J. M. Debets, J. Varga, M.V.D. Gaag, K. Swart, R.F. Hoekstra, Efficient degradation of tannic acid by black Aspergillus species, Mycol. Res., 108 (2004) 919-925.
DOI: 10.1017/s0953756204000747
Google Scholar
[27]
M.B. Cunha-Santino, I. Bianchini Jr, L.E.F. Serrano, Aerobic and anaerobic degradation of tannic acid on water samples from Monjolinho reservoir (São Carlos, SP, Brazil), Brazil. J. Biol., 62 (2002) 585-590.
DOI: 10.1590/s1519-69842002000400004
Google Scholar
[28]
J. M. Dimitric-Markovic, U.B. Mioc, J.M. Baranac, Z.P. Nedic. A study of the IR spectra of the co-pigments of malvin chloride with organic acids. J. Serb. Chem. Soc., 66 (7) (2001) 451-462.
DOI: 10.2298/jsc0107451d
Google Scholar
[29]
P.A. Connor, K.D. Dobson, A.J. McQuillan. Infrared spectroscopy of the TiO2 aqueous solution interface. Langmuir 15 (1999) 2402-2408.
DOI: 10.1021/la980855d
Google Scholar
[30]
L.K. El-Gabry, M.M. El Zawahry. Effect of tannic acid on the dyeing process of nylon 6 fabric with cationic dye. RJTA, 12(4) (2008) 21-30.
DOI: 10.1108/rjta-12-04-2008-b003
Google Scholar
[31]
S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Photodegradation of 2- naphthol in water by artificial light illumination using TiO2 photocatalyst: Identification of intermediates and the reaction pathway, Applied Catalysis A: General, 334 (2008).
DOI: 10.1016/j.apcata.2007.09.034
Google Scholar
[32]
S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution - kinetics, mineralization and reaction, Chem. Eng. J., 125 (2006) 59-66.
DOI: 10.1016/j.cej.2006.08.004
Google Scholar
[33]
S. Li, D. Bejan, M. S McDowell., N.J. Bunce, Mixed first and zero order kinetics in the electrooxidation of sulamethoxazole at a boron- doped diamond (BDD) anode, J Appl. Electrochem., 38 (2008) 151-159.
DOI: 10.1007/s10800-007-9413-2
Google Scholar