p.63
p.90
p.117
p.127
p.138
p.186
p.215
p.226
p.237
Current Perspective of Semiconductor and its Composites with Unusual Surfaces for the Use of Photocatalysis: Review
Abstract:
Recently, numerous semiconducting materials and its composites are studied for their photocatalysis applications. These materials having different size, shape and controlled morphology in micro, meso and nanoscale exhibits various important surface features having remarkable applications in photocatalytic degradation of toxic pollutants, hydrogen production and adsorbent for wastewater treatment. However different methods are followed to synthesis semiconductors, metal supported/loaded semiconductors, heterostructures, graphene based semiconductors and other newer materials. In addition, the surface morphologies of these materials and composites for its photo catalytic processes can be explained. Finally the photophysical properties of semiconductor and composite materials with unusual texture will be summarized.
Info:
Periodical:
Pages:
138-185
Citation:
Online since:
December 2012
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
[2] A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35.
[3] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.
DOI: 10.1039/c1cs15172j
[4] J-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B. 140 (2009) 319-336.
[5] P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, Nanostructured metal oxide-based biosensors, NPG Asia Mater. 3 (2011) 17-24.
[6] R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells, J. Am. Ceram. Soc. 92 (2009) 289-301.
[7] X. Wang, H-F. Wu, Q. Kuang, R-B. Huang, Z-X. Xie, L-S. Zhang, Shape-dependent antibacterial activities of Ag2O polyhedral particles, Langmuir. 26 (2010) 2774-2778.
DOI: 10.1021/la9028172
[8] J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography facet-dependent antibacterials activity: the case of Cu2O, Ind. Eng. Chem. Res. 50 (2011) 10366-10369.
DOI: 10.1021/ie2005466
[9] B. Levy, Photochemistry of nanostructured materials for energy applications, J. Electoceram. 1 (1997) 239-272.
[10] P. V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C . 111 (2007) 2834-2860.
DOI: 10.1021/jp066952u
[11] K. Rajeshwar, N. R. De Tacconi, Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev. 38 (2009) 1984-(1998).
DOI: 10.1039/b811238j
[12] X. Hu, G. Li, J. C. Yu, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications, Langmuir. 26 (2010) 3031-3039.
DOI: 10.1021/la902142b
[13] D. Chen, M. Sivakumar, A. K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.
[14] D. S. Bhatkhande, V. G. Pangarkar, A. ACM. Beenackers, Photocatalytic degradation for environmental applications – a review, J. Chem Technol Biotechnol. 77 (2001) 102-116.
DOI: 10.1002/jctb.532
[15] R. Vinu, G. Madras, Environmental remediation by photocatalysis, J. Indian Inst Sci. 90 (2010) 189-230.
[16] Y. Liu, G. Su, B. Zhang, G. Jiang, B. Yan, Nanoparticle-based strategies for detection and remediation of environmental pollutants, Analyst. 136 (2011) 872-877.
DOI: 10.1039/c0an00905a
[17] A. D. Paola, E. García-López, G. Marcí, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.
[18] N. Serpone, A. V. Emeline, S. Horikoshi, V. N. Kuznetsov, V. K. Ryabchuk, On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s, Photochem. Photobiol. Sci. 11(2012) 1121-1150.
DOI: 10.1039/c2pp25026h
[19] A. Kudo, Photocatalysis and solar hydrogen production, Pure Appl. Chem. 79 (2007) 1917-(1927).
[20] K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor–solution interfaces, J. Appl. Electrochem. 37 (2007) 765-787.
[21] M. Kitano, K. Tsujimaru, M. Anpo, Hydrogen production using highly active titanium oxide-based photocatalysts, Top. Catal. 49 (2008) 4-17.
[22] J. Zhu, M. Zäch, Nanostructured materials for photocatalytic hydrogen production, Curr. Opin. Colloid Interface Sci. 14 (2009) 260-269.
[23] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503-6570.
DOI: 10.1021/cr1001645
[24] J. H. Kou, J. Gao, Z. S. Li, Z. G. Zou, Research on photocatalytic degradation properties of organics with different new photocatalysts, Curr. Org. Chem. 14 (2010) 728-744.
[25] D. Zhang, G. Li, J. C. Yu, Advanced photocatalytic nanomaterials for degradation pollutants and generating fuels by sunlight, in L. Zang (Eds. ), Energy efficiency and renewable energy through nanotechnology, green energy and technology, Springer-Verlag Ltd., London, 2011, pp.679-716.
[26] A. Mills, R. H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev. 22 (1993) 417- 425.
DOI: 10.1039/cs9932200417
[27] X-L. Fang, C. Chen, M-S. Jin, Q. Kuang, Z-X. Xie, S-Y. Xie, R-B. Huang, L-S. Zheng, Single-crystal-like hematite colloidal nanocystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem. 19 (2009).
DOI: 10.1039/b905034e
[28] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res. 44 (2010) 2997-3027.
[29] S. H. S. Chan, T. Y. Wu, J. C. Juan, C. Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Techno. Biotechnol. 86 (2011) 1130-1158.
DOI: 10.1002/jctb.2636
[30] S. Ran, Y. Zhu, H. Huang, B. Liang, J. Xu, B. Liu, J. Zhang, Z. Xie, Z. Wang, J. Ye, D. Chen, G. Shen, Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment, CrystEngComm. 14 (2012).
DOI: 10.1039/c2ce06308e
[31] E. Fujita, J. T. Muckerman, K. Domen, A current perspective on photocatalysis, ChemSusChem 4 (2011) 155-157.
[32] S. Linic, P. Christopher, D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10 (2011) 911-921.
DOI: 10.1038/nmat3151
[33] C. Li, F. Wang, J. C. Yu, Semiconductor/bimolecular composites for solar energy applications, Energy Environ. Sci. 4 (2011) 100-113.
[34] H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures, Energy Environ. Sci. 5 (2012) 6732-6743.
DOI: 10.1039/c2ee03447f
[35] D. Chen, Design, synthesis and properties of highly functional nanostructured photocatalysts, Recent Patents Nanotechnol. 2 (2008) 183-189.
[36] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges, Adv. Mater. 24 (2012) 229-251.
[37] M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy. Environ. Sci. 4 (2011) 3275-3286.
DOI: 10.1039/c1ee01577j
[38] Y. Mao, T-J. Park, S. S. Wong, Synthesis of classes of ternary metal oxide nanostructures, Chem. Commun. (2005) 5721-5735.
DOI: 10.1039/b509960a
[39] Y-W. Jun, J-S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem. Int. Ed. 45 (2006) 3414-3439.
[40] C. Hu, Y. Xi, H. Liu, Z. L. Wang, Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures, J. Mater. Chem. 19 (2009) 858-868.
DOI: 10.1039/b816304a
[41] I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale. 2 (2010) 1358-1374.
DOI: 10.1039/b9nr00377k
[42] S. Shen, X. Wang, Controlled growth of inorganic nanocrystals: size and surface effects of nuclei, Chem. Commun. 46 (2010) 6891-6899.
DOI: 10.1039/c0cc00900h
[43] J. H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X. S. Zhao, Porous photocatalysts for advanced water purifications, J. Mater. Chem. 20 (2010) 4512-4528.
DOI: 10.1039/b925523k
[44] G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations, Angew. Chem. Int. Ed. 50 (2011) 826-859.
[45] G. Liu, J. C. Yu, G. Q. Lu, H-M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties, Chem. Comm. 47 (2011) 6763-6783.
DOI: 10.1039/c1cc10665a
[46] L. Zhou, P. Ơ Brien, Mesocrystals-properties and applications, J. Phys. Chem. Lett. 3 (2012) 620-628.
[47] L. X. Song, J. Xia, Z. Dang, J. Yang, L. B. Wang, J. Chen, Formation, structure and physical properties of a series of α-MoO3 nanocrystals: from 3D to 1D and 2D, CrystEngComm. 14 (2012) 2675-2682.
DOI: 10.1039/c2ce06567c
[48] M. H. Huang, P-H. Lin, Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties, Adv. Funct. Mater. 22 (2012) 14-24.
[49] R. M. Mohamed, D. L. Mckinney, W. M. Sigmund, Enhanced nanocatalysts, Mater. Sci. Eng. R 73 (2012) 1-13.
[50] A. L. Linsebigler, G. Lu, J. T. Y. Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
DOI: 10.1021/cr00035a013
[51] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1-21.
[52] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys. 44 (2005) 8269-8285.
DOI: 10.1143/jjap.44.8269
[53] U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. Rev. 9 (2008) 1-12.
[54] D. P. Macwan, P. N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications, J. Mater. Sci. 46 (2011) 3669-3686.
[55] X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of titanium dioxide in arsenic removal from water: a review, J. Hazard. Mater. 215-216 (2012) 1-16.
[56] M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.
DOI: 10.1039/b907933e
[57] W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang, D. Liu, One-dimensional single-crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications, J. Mater. Chem. 20 (2010) 5993-6008.
DOI: 10.1039/b927224k
[58] G. Liu, L. Wang, H. G. Yang, H-M. Cheng, G. Q. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring, J. Mater. Chem. 20 (2010) 831-843.
DOI: 10.1039/b909930a
[59] S. G. Kumar, L. G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.
DOI: 10.1021/jp204364a
[60] A. A. Ismail, D. W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms, J. Mater. Chem. 21 (2011) 11686-11707.
DOI: 10.1039/c1jm10407a
[61] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon. 49 (2011) 741-772.
[62] A. Primo, A. Corma, H. García, Titania supported gold nanoparticles as photocatalyst, Phys. Chem. Chem. Phys. 13 (2011) 886-910.
DOI: 10.1039/c0cp00917b
[63] A. S. Weber, A. M. Grady, R. T. Koodali, Lanthanide modified semiconductor photocatalysts, Catal. Sci. Technol. 2 (2012) 683-693.
DOI: 10.1039/c2cy00552b
[64] T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C. 115 (2011).
DOI: 10.1021/jp109134z
[65] G. D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, E. F. Vansant, ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study, J. Mater. Sci. 45 (2010) 5786-5794.
[66] D. Wang, G. Xue, Y. Zhen, F. Fu, D. Li, Monodispered Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22 (2012) 4751-4758.
DOI: 10.1039/c2jm14448d
[67] J. Liu, Y. Sun, Z. Li, Ag loaded flower-like BaTiO3 nanotube arrays: fabrication and enhanced photocatalytic property, CrystEngComm. 14 (2012) 1473-1478.
DOI: 10.1039/c1ce05949a
[68] M. Shang, W. Wang, W. Yin, J. Ren, S. Sun, L. Zhang, General strategy for a large-scale fabric branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications, Chem. Eur. J. 16 (2010) 11412-11419.
[69] X. An, J. C. Yu, Graphene-based photocatalytic composites, RSC Adv. 1 (2011) 1426-1434.
[70] I-S. Cho, D. W. Kim, S. Lee, C. H. Kwak, S-T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D-W. Kim, K. S. Hong, Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light, Adv. Funct. Mater. 18 (2008) 2154-2162.
[71] X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity, Chem. Eur. J. 17 (2011) 7777-7780.
[72] L-M. Lyu, W-C. Wang, M. H. Huang, Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties, Chem. Eur. J. 16 (2010) 14167-14174.
[73] L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis, Chem. Eur. J. 15 (2009) 1776-1782.
[74] Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, S. Yang, Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis, CrystEngComm. 13 (2011) 1843-1850.
DOI: 10.1039/c0ce00508h
[75] H. Lu, S. Wang, L. Zhao, B. Dong, Z. Xu, J. Li, Surfactant-assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable size, RSC Adv. 2 (2012) 3374-3378.
DOI: 10.1039/c2ra01203k
[76] H. Xiao, Z. Ai, L. Zhang, Nonaqueous sol−gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment, J. Phys. Chem. C. 113 (2009) 16625-16630.
DOI: 10.1021/jp9050269
[77] L. Qian, J. Zhu, W. Du, X. Qian, Solvothermal synthesis, electrochemical and photocatalytic properties of monodispersed CeO2 nanocubes, Mater. Chem. Phys. 115 (2009) 835-840.
[78] H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties, J. Phys. Chem. B. 110 (2006) 13829-13834.
DOI: 10.1021/jp061934y
[79] W. Zhou, B. Yan, C. Cheng, C. Cong, H. Hu, H. Fan, T. Yu, Facile synthesis and shape evolution of highly symmetric 26-facet polyhedral microcrystals of Cu2O, CrystEngComm. 11 (2009) 2291-2296.
DOI: 10.1039/b912034n
[80] L. Xu, L-P. Jiang, J-J. Zhu, Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures, Nanotechnology. 20 (2009) 045605(6pp).
[81] Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li, G. Zou, Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature, Angew. Chem. Int. Ed. 49 (2010) 4282-4285.
[82] H. Shi, K. Yu, F. Sun, Z. Zhu, Controllable synthesis of novel Cu2O micro/nano-crystals and their photoluminescence, photocatalytic and field emission properties, CrystEngComm. 14 (2012) 278-285.
DOI: 10.1039/c1ce05868a
[83] X. Meng, G. Tian, Y. Chen, Y. Qu, J. Zhou, K. Pan, W. Zhou, G. Zhang, H. Fu, Room temperature solution synthesis of hierarchical bow-like Cu2O with high visible light driven photocatalytic activity, RSC Advances, 2 (2012) 2875-2881.
DOI: 10.1039/c2ra01197b
[84] S. Wang, H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang, CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres, J. Solid State. Chem. 182 (2009) 1088-1093.
[85] J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp, Appl. Catal. A: Gen. 406 (2011) 51-58.
[86] X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, CuO nanowires prepared via a facile solution route and their photocatalytic property, Mater. Lett. 72 (2012) 49-52.
[87] S-W. Cao, Y-J. Zhu, Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment, J. Phys. Chem. C. 112 (2008) 6253-6257.
DOI: 10.1021/jp8000465
[88] J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth. Des. 9 (2009) 1474-1480.
DOI: 10.1021/cg800941d
[89] X. Li, X. Yu, J. He, Z. Xu, Controllable fabrication, growth mechanisms, and photocatalytic properties of hematite hollow spindles, J. Phys. Chem. C. 113 (2009) 2837-2845.
DOI: 10.1021/jp8079217
[90] L-Y. Chen, Y. Liang, Z-D. Zhang, Corundum-type In2O3 urchin-like nanostructures: synthesis derived from orthorhombic InOOH and application in photocatalysis, Eur. J. Inorg. Chem. (2009) 903-909.
[91] L-Y. Chen, Z-X. Wang, Z-D. Zhang, Corundum-type tubular and rod-like In2O3 nanocrystals: synthesis from designed InOOH and application in photocatalysis, New. J. Chem, 33 (2009) 1109-1115.
DOI: 10.1039/b817588h
[92] H. Zhao, H. Dong, L. Zhang, X. Wang, H. Yang, Controlled synthesis and photocatalytic properties of porous hollow In2O3 microcubes with different sizes, Mater. Chem. Phys. 130 (2011) 921-931.
[93] L. Cheng, M. Shao, X. Wang, H. Hu, Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties, Chem. Eur. J. 15 (2009) 2310-2316.
[94] Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J-J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties, CrystEngComm. 12 (2010) 3740-3747.
DOI: 10.1039/c000744g
[95] X. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties, J. Phys. Chem. C. 112 (2008) 15299-15305.
DOI: 10.1021/jp804921g
[96] S. Shang, K. Xue, D. Chen, X. Jiao, Preparation and characterization of rose-like NiO nanostructures, CrystEngComm. 13 (2011) 5094-5099.
DOI: 10.1039/c0ce00975j
[97] L. Shi, H. Lin, Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment, Langmuir, 26 (2010) 18718-18722.
DOI: 10.1021/la103769d
[98] Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications, CrystEngComm. 13 (2011) 3506-3510.
DOI: 10.1039/c1ce05171g
[99] S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, N. Petrova, Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity, J. mater. Chem. 16 (2006).
DOI: 10.1039/b514632a
[100] N. Lakshminarasimhan, W. Kim, W. Choi, Effect of the agglomerated state on the photocatalytic hydrogen production with in situ agglomeration of colloidal TiO2 nanoparticles, J. Phys. Chem. C. 112 (2008) 20451-20457.
DOI: 10.1021/jp808541v
[101] B. Zhao, F. Chen, Q. Huang, J. Zhang, Brookite TiO2 nanoflowers, Chem. Commun. (2009) 5115-5117.
DOI: 10.1039/b909883f
[102] S-J. Liu, X-X. Wu, B. Hu, J-Y. Gong, S-H. Yu, Novel anatase TiO2 boxes and tree-like structures assembled by hollow tubes: D, L-malic acid-assisted hydrothermal synthesis, growth mechanism, and photocatalytic properties, Cryst. Growth. Des. 9 (2009).
DOI: 10.1021/cg8010597
[103] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis, Chem. Commun. 46 (2010) 1664-1666.
DOI: 10.1039/b924172h
[104] X. Meng, D-W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y-H. Han, V. Bhoraskar, J-B. Yoo, Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity, CrystEngComm. 13 (2011).
DOI: 10.1039/c0ce00765j
[105] H. Zhang, G. Du, W. Lu, L. Cheng, X. Zhu, Z. Jiao, Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties, CrystEngComm. 14 (2012) 3793-3801.
DOI: 10.1039/c2ce06731e
[106] Y. Aoyama, Y. Oaki, R. Ise, H. Imai, Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst, CrystEngComm. 14 (2012) 1405-1411.
DOI: 10.1039/c1ce05774j
[107] B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities, Nanotechnology 17 (2006) 2560-2566.
[108] T. F-R. Shen, M-H. Lai, T. C-K. Yang, I-P. Fu, N-Y. Liang, W-T. Chen, Photocatalytic production of hydrogen by vanadium oxides under visible light irradiation, J. Taiwan Inst. Chem. Eng. 43 (2012) 95-101.
[109] D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater. 18 (2008) 1922-(1928).
[110] A. M-D. La Cruz, D. S. Martínez, E. L. Cuéllar, Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation, Solid State Sci. 12(2010) 88-94.
[111] F. Lu, W. Cai, Y. Zhang, ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater. 18 (2008) 1047-1056.
[112] L. Xu, Y-L. Hu, C. Pelligra, C-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater. 21 (2009).
DOI: 10.1021/cm900608d
[113] B. Li, Y. Wang, Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures, J. Phys. Chem. C. 114 (2010) 890-896.
DOI: 10.1021/jp909478q
[114] G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity, J. Phys. Chem. C. 115 (2011) 7145-7152.
DOI: 10.1021/jp110256s
[115] Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng, T. Ge, Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance, CrystEngComm. 13 (2011) 2137-2142.
DOI: 10.1039/c0ce00741b
[116] J-Y. Dong, W-H. Lin, Y-J. Hsu, D. S-H. Wong, S-Y. Lu, Ultrafast formation of ZnO mesocrystals with excellent photocatalytic activities by a facile tris-assisted antisolvent process, CrystEngComm. 13 (2011) 6218-6222.
DOI: 10.1039/c1ce05503h
[117] T. Zhai, S. Xie, Y. Zhao, X. Sun, X. Lu, M. Yu, M. Xu, F. Xiao, Y. Tong, Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity, CrystEngComm. 14 (2012) 1850-1855.
DOI: 10.1039/c1ce06013a
[118] H. Zheng, K. Liu, H. Cao, X. Zhang, L-Lysine-assisted synthesis of ZrO2 nanocrystals and their application in photocatalysis, J. Phys. Chem. C. 113 (2009) 18259-18263.
DOI: 10.1021/jp9057324
[119] Z. Shu, X. Jiao, D. Chen, Synthesis and photocatalytic properties of flower-like zirconia nanostructures, CrystEngComm. 14 (2012) 1122-1127.
DOI: 10.1039/c1ce06155k
[120] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 6490-6492.
DOI: 10.1021/ja2002132
[121] Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, J. Ye, Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges, Chem. Commun. 48 (2012) 3748-3750.
DOI: 10.1039/c2cc30363a
[122] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, CrystEngComm. 14 (2012) 2966-2973.
DOI: 10.1039/c2ce06425a
[123] M. Ge, N. Zhu, Y. Zhao, J. Li, L. Liu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res. 51 (2012) 5167-5173.
DOI: 10.1021/ie202864n
[124] X. Zhang, J. Lv, L. Bourgeois, J. Cui, Y. Wu, H. Wang, P. A. Webley, Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies, New. J. Chem. 35 (2011) 937-941.
DOI: 10.1039/c1nj00008j
[125] Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation, J. Mol. Catal. A. Chem. 303 (2009) 9-14.
[126] A. M-D. La Cruz, S. O. Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: Photoassisted degradation of organic dyes under vis-irradiation, 320 (2010) 85-91.
[127] G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts, J. Mater. Chem. 21 (2011) 887-892.
DOI: 10.1039/c0jm03040f
[128] C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang, X. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres, CrystEngComm. 14 (2012) 3602-3608.
DOI: 10.1039/c2ce06757a
[129] J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, F. Xu, Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands, J. Mater. Chem. 21 (2011) 3872-3876.
DOI: 10.1039/c0jm03252b
[130] C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, 17 (2005) 3537-3545.
DOI: 10.1021/cm0501517
[131] L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem. 17 (2007) 2526-2532.
DOI: 10.1039/b616460a
[132] Y. Li, J. Liu, X. Huang, Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures, Nanoscale. Res. Lett. 3 (2008) 365-371.
[133] D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan, Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability, J. Phys. Chem. C. 113 (2009).
DOI: 10.1021/jp810726d
[134] X-J. Dai, Y-S. Luo, W-D. Zhang, S-Y. Fu, Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area, Dalton Trans. 39 (2010) 3426-3432.
DOI: 10.1039/b923443h
[135] Z. Chen, L. Qian, J. Zhu, Y. Yuan, X. Qian, Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 12 (2010) 2100-2106.
DOI: 10.1039/b921228k
[136] L. Xu, X. Yang, Z. Zhai, W. Hou, EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities, CrystEngComm. 13 (2011) 7267-7275.
DOI: 10.1039/c1ce05671a
[137] X-F. Cao, L. Zhang, X-T. Chen, Z-L. Xue, Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties, CrystEngComm. 13 (2011) 306-311.
DOI: 10.1039/c0ce00031k
[138] D. He, L. Wang, H. Li, T. Yan, D. Wang, T. Xie, Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: synthesis, photo-induced charges transfer properties, and photocatalytic activities, CrystEngComm. 13 (2011) 4053-4059.
DOI: 10.1039/c0ce00918k
[139] L. Wang, W. Wang, M. Shang, S. Sun, W. Yin, J. Ren, J. Zhou, Visible light responsive bismuth niobate photocatalyst: enhanced contaminant degradation and hydrogen generation, J. Mater. Chem. 20 (2010) 8405-8410.
DOI: 10.1039/c0jm01669a
[140] M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis, CrystEngComm. 12 (2010) 1754-1758.
DOI: 10.1039/b923115c
[141] X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites, Mater. Chem. Phys. 125 (2011).
[142] H. Li, G. Liu, S. Chen, Q. Liu, W. Lu, Synthesis and characterization of monoclinic BiVO4 nanorods and nanoplates via microemulsion-mediated hydrothermal method, Physica E. 43 (2011) 1323-1328.
[143] M. Han, X. Chen, T. Sun, K. Tan, M. S. Tse, Synthesis of mono-dispersed m-BiVO4 octahedral nano-crystals with enhanced visible light photocatalytic properties, CrystEngComm. 13 (2011) 6674-6679.
DOI: 10.1039/c1ce05539a
[144] L. Zhou, W. Wang, H. Xu, S. Sun, . Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property, Cryst. Growth. Des. 8 (2008) 3595-3601.
DOI: 10.1021/cg800077h
[145] D. Li, Y. Zhu, Synthesis of CdMoO4 microspheres by self-assembly and photocatalytic performances, CrystEngComm. 14 (2012) 1128-1134.
DOI: 10.1039/c1ce05838j
[146] M. Dong, Q. Lin, H. Sun, D. Chen, T. Zhang, Q. Wu, S. Li, Synthesis of cerium molybdate hierarchical architectures and their novel photocatalytic and adsorption performances, Cryst. Growth. De. 11 (2011) 5002-5009.
DOI: 10.1021/cg200904t
[147] L. Zhang, X-F. Cao, Y-L. Ma, X-T. Chen, Z-L. Xue, Pancake-like Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties, New. J. Chem. 34 (2010) 2027-(2033).
DOI: 10.1039/c0nj00048e
[148] J. Zeng, H. Wang, Y. C. Zhang, M. K. Zhu,H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C. 111 (2007) 11879-11887.
DOI: 10.1021/jp0684628
[149] I-S. Cho, C. H. Kwak, D. W. Kim, S. Lee, K. S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C. 113 (2009) 10647-10653.
DOI: 10.1021/jp901557z
[150] I-S. Cho, S. Lee, J. H. Noh, D. W. Kim, D. K. Lee, H. S. Jung, D-W. Kim, K.S. Hong, SrNb2O6 nanotubes with enhanced photocatalytic activity, J. Mater. Chem. 20 (2010) 3979-3983.
DOI: 10.1039/b926694a
[151] J. Lin, J. Lin, Y. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372-8378.
DOI: 10.1021/ic701036k
[152] R. Shi, Y. Wang, F. Zhou, Y. Zhu, Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance, J. Mater. Chem. 21 (2011) 6313-6320.
DOI: 10.1039/c0jm04451b
[153] J. Xu, C. Hu, Y. Xi, B. Wan, C. Zhang, Y. Zhang, Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires, Solid State Sci. 14 (2012) 535-539.
[154] S. Li, Y-H. Lin, B-P. Zhang, Y. Wang, C-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C. 114 (2010) 2903-2908.
DOI: 10.1021/jp910401u
[155] Y. Huo, M. Miao, Y. Zhang, J. Zhu, H. Li, Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability, Chem. Commun. 47 (2011) 2089-(2091).
DOI: 10.1039/c0cc04247a
[156] L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets, Cryst. Growth. Des. 11 (2011) 1049-1053.
DOI: 10.1021/cg101144s
[157] W. Wang, J. Bi, L. Wu, Z. Li, X. Fu, Hydrothermal synthesis and catalytic performances of a new photocatalyst CaSnO3 with microcube morphology, Scripta Mater. 60 (2009) 186-189.
[158] D. Chen, J. Ye, SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties, Chem. Mater. 19 (2007) 4585-4591.
[159] Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity, J. Colloid. Interface. Sci. 358 (2011) 68-72.
[160] P. Tang, H. Chen, F. Cao, G. Pan, Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts, Catal. Sci. Technol. 1 (2011) 1145-1148.
DOI: 10.1039/c1cy00199j
[161] C. Fang, B. Geng, J. Liu, F. Zhan, D-fructose molecule template route to ultra-thin ZnSnO3 nanowire architectures and their application as efficient photocatalyst, Chem. Commun. (2009) 2350-2352.
DOI: 10.1039/b821459j
[162] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715-719.
[163] X. Hou, J. Feng, X. Xu, M. Zhang, Synthesis and characterizations of spinel MnFe2O4 nanorod by seed–hydrothermal route, J. Alloys Compd. 491 (2010) 258-263.
[164] P. Guo, G. Zhang, J. Yu, H. Li, X. S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite, Colloids Surf. A: Physicochem. Eng. Aspects. 395 (2012) 168-174.
[165] B. Cui, H. Lin, Y-Z. Liu, J-B. Li, P. Sun, X-C. Zhao, C-J. Liu, Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets, J. Phys. Chem. C. 113 (2009) 14083-14087.
DOI: 10.1021/jp900028t
[166] S-W. Cao, Y-J. Zhu, G-F. Cheng, Y-H. Huang, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazard. Mater. 171 (2009) 431-435.
[167] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light, J. Mater. Chem. 20 (2010) 3665-3672.
DOI: 10.1039/b919897k
[168] X. Li, Y. Hou, Q. Zhao, L. Wang, A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation, J. Colloid. Interface. Sci. 358 (2011) 102-108.
[169] J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, R. Chen, BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances, CrystEngComm. 13 (2011) 2381-2390.
DOI: 10.1039/c0ce00705f
[170] T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 13 (2011) 4010-4017.
DOI: 10.1039/c1ce05113j
[171] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance, RSC Advances. 1 (2011) 1542-1553.
DOI: 10.1039/c1ra00335f
[172] G. Li, K. Chao, C. Ye, H. Peng, . One-step synthesis of Ag nanoparticles supported on AgVO3 nanobelts, Mater. Lett. 62 (2008) 735-738.
[173] X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, H. Zhu, Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Green Chem. 12 (2010) 414-419.
DOI: 10.1039/b921696k
[174] S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity, Appl. Catal. B. 119-120 (2012) 146-155.
[175] H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Chem. Commun, (2009) 7524-7526.
DOI: 10.1039/b917052a
[176] G. Zhu, W. Que, J. Zhang, Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation, J. Alloys Compd. 509 (2011) 9479-9486.
[177] J. Liu, Y. Sun, Z. Li, Ag loaded flower-like BaTiO3 nanotube arrays: fabrication and enhanced photocatalytic property, CrystEngComm. 14 (2012) 1473-1478.
DOI: 10.1039/c1ce05949a
[178] D. Wang, G. Xue, Y. Zhen, F. Fu, D. Li, Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22 (2012) 4751-4758.
DOI: 10.1039/c2jm14448d
[179] S. Anandan, P. Sathish Kumr, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88, Sol. Energy Mater. Sol. Cells. 92 (2008) 929-937.
[180] S. Anandan, G-J. Lee, P-K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods, Ind. Eng. Chem. Res. 49 (2010) 9729-9737.
DOI: 10.1021/ie101361c
[181] P-K. Chen, G-J. Lee, S. Anandan, J. J. Wu, Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II, Mater. Sci. Eng. B. 177 (2012) 190-196.
[182] M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nature. Chem. 3 (2011).
DOI: 10.1038/nchem.1048
[183] D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers, Chem. Mater. 21 (2009) 3479-3484.
DOI: 10.1021/cm900225p
[184] W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 Nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity, 2 (2010) 2385-2392.
DOI: 10.1021/am100394x
[185] Y. Zhou, F. Krumeich, A. Heel, G. R. Patzke, One-step hydrothermal coating approach to photocatalytically active oxide composites, Dalton. Trans. 39 (2010) 6043-6048.
DOI: 10.1039/b926790e
[186] G. Colón, S. M. López, M. C. Hidalgo, J. A. Navío, Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamine B degradation, Chem. Commun. 46 (2010) 4809-4811.
DOI: 10.1039/c0cc00058b
[187] T. Cao, Y. Li, C. Wang, L. Wei, C. Shao, Y. Liu, Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/ TiO2 nanofibers heterostructures, Mater. Res. Bull, 45 (2010) 1406-1412.
[188] S. Jung, K. Yong, Fabrication of CuO–ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications, Chem. Commun. 47 (2011) 2643-2645.
DOI: 10.1039/c0cc04985a
[189] J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces. 4 (2012) 424-430.
DOI: 10.1021/am201499r
[190] J. Lin, J. Shen, R. Wang, J. Cui, W. Zhou, P. Hu, D. Liu, H. Liu, J. Wang, R. I. Boughton, Y. Yue, Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity, 21 (2011) 5106-5113.
DOI: 10.1039/c0jm04131a
[191] J. Kang, Q. Kung, Z-X. Xie, L-S. Zheng, Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property, J. Phys. Chem. C. 115 (2011) 7874-7879.
DOI: 10.1021/jp111419w
[192] C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 Nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties, Inorg. Chem. 48 (2009) 7261-7268.
DOI: 10.1021/ic9005983
[193] W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R. I. Boughton, D. Liu, H. Jiang, Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance, J. Mater. Chem. 21 (2011).
DOI: 10.1039/c1jm10588d
[194] Y. Wang, J. Zhang, L. Liu, C. Zhu, X. Liu, Q. Su, Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning, Mater. Lett. 75 (2012) 95-98.
[195] M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, . Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties, J. Mater. Chem. 22 (2012).
DOI: 10.1039/c1jm13470a
[196] J. Mu, C. Shao, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, B. Chen, Y. Liu, In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity, J. Mater. Chem. 22 (2012) 1786-1793.
DOI: 10.1039/c1jm13577e
[197] L. Kong, W. Chen, D. Ma, Y. Yang, S. Liu, S. Huang, Size control of Au@Cu2O octahedra for excellent photocatalytic performance, J. Mater. Chem. 22 (2012) 719-724.
DOI: 10.1039/c1jm13672k
[198] W-S. Wang, L. Zhen, C-Y. Xu, W-Z. Shao, Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core−shell microspheres, Cryst. Growth. Des. 9 (2009) 1558-1568.
DOI: 10.1021/cg801194j
[199] Y. Wang, S. Li, X. Xing, F. Huang, Y. Shen, A. Xie, X. Wang, J. Zhang, Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures and their enhanced photocatalytic activity under visible light, Chem. Eur. J. 17 (2011).
[200] Z. Wang, S. Zhu, S. Zhao, H. Hu, Synthesis of core–shell Fe3O4@SiO2@MS (M= Pb, Zn, and Hg) microspheres and their application as photocatalysts, J. Alloys Compd. 509 (2011) 6893-6898.
[201] Y-L. Min, K. Zhang, Y-C. Chen, Y-G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Sep. Purfi. Technol. 86 (2012} 98-105.
[202] E. Gao, W. Wang, M. Shang, J. Xu, Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite, Phys. Chem. Chem. Phys. 13 (2011) 2887-2893.
DOI: 10.1039/c0cp01749c
[203] Y. Fu, X. Sun, X. Wang, BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Mater. Chem. Phys. 131 (2011) 325-320.
[204] S. Liu, J. Tian, L. Wang, L. Wang, Y. Luo, X. Sun, One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes, Catal. Sci. Technol. 2 (2012) 339-344.
DOI: 10.1039/c1cy00374g
[205] J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W-J. Moon, D-M. Song, Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water, RSC Advances, 2 (2012) 1356-1363.
DOI: 10.1039/c1ra00621e
[206] B. Li, H. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem. 21 (2011) 3346-3349.
DOI: 10.1039/c0jm03253k
[207] X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, J. Alloys Compd. 524 (2012) 13-21.
[208] Z. Liu, H. Bai, D. D. Sun, Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications, New. J. Chem. 35 (2011) 137-140.
DOI: 10.1039/c0nj00593b
[209] D. Jian, P-X. Gao, W. Cai, B. S. Allimi, S. P. Alpay, Y. Ding, Z. L. Wang, C. Brooks, Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr)CoO3 composite nanorod arrays, J. Mater. Chem. 19 (2009) 970-975.
DOI: 10.1039/b817235h
[210] S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors, Dyes Pigments. 76 (2008) 535-541.
[211] P. Sathish kumar, M. Ruby raj, S. Anandan, Nanoporous Au–TiMCM-41—an inorganic hybrid photocatalyst toward visible photooxidation of methyl orange, Sol. Energy Mater. Sol. Cells. 94 (2010) 1783-1789.
[212] X. An, J. C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing, J. Mater. Chem. 22 (2012) 8525-8531.
DOI: 10.1039/c2jm16709c