Current Perspective of Semiconductor and its Composites with Unusual Surfaces for the Use of Photocatalysis: Review

Article Preview

Abstract:

Recently, numerous semiconducting materials and its composites are studied for their photocatalysis applications. These materials having different size, shape and controlled morphology in micro, meso and nanoscale exhibits various important surface features having remarkable applications in photocatalytic degradation of toxic pollutants, hydrogen production and adsorbent for wastewater treatment. However different methods are followed to synthesis semiconductors, metal supported/loaded semiconductors, heterostructures, graphene based semiconductors and other newer materials. In addition, the surface morphologies of these materials and composites for its photo catalytic processes can be explained. Finally the photophysical properties of semiconductor and composite materials with unusual texture will be summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-185

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[2] A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35.

Google Scholar

[3] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.

DOI: 10.1039/c1cs15172j

Google Scholar

[4] J-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B. 140 (2009) 319-336.

DOI: 10.1016/j.snb.2009.04.026

Google Scholar

[5] P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, Nanostructured metal oxide-based biosensors, NPG Asia Mater. 3 (2011) 17-24.

DOI: 10.1038/asiamat.2010.137

Google Scholar

[6] R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells, J. Am. Ceram. Soc. 92 (2009) 289-301.

DOI: 10.1111/j.1551-2916.2008.02870.x

Google Scholar

[7] X. Wang, H-F. Wu, Q. Kuang, R-B. Huang, Z-X. Xie, L-S. Zhang, Shape-dependent antibacterial activities of Ag2O polyhedral particles, Langmuir. 26 (2010) 2774-2778.

DOI: 10.1021/la9028172

Google Scholar

[8] J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography facet-dependent antibacterials activity: the case of Cu2O, Ind. Eng. Chem. Res. 50 (2011) 10366-10369.

DOI: 10.1021/ie2005466

Google Scholar

[9] B. Levy, Photochemistry of nanostructured materials for energy applications, J. Electoceram. 1 (1997) 239-272.

Google Scholar

[10] P. V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C . 111 (2007) 2834-2860.

DOI: 10.1021/jp066952u

Google Scholar

[11] K. Rajeshwar, N. R. De Tacconi, Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev. 38 (2009) 1984-(1998).

DOI: 10.1039/b811238j

Google Scholar

[12] X. Hu, G. Li, J. C. Yu, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications, Langmuir. 26 (2010) 3031-3039.

DOI: 10.1021/la902142b

Google Scholar

[13] D. Chen, M. Sivakumar, A. K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.

DOI: 10.1002/apj.5500080507

Google Scholar

[14] D. S. Bhatkhande, V. G. Pangarkar, A. ACM. Beenackers, Photocatalytic degradation for environmental applications – a review, J. Chem Technol Biotechnol. 77 (2001) 102-116.

DOI: 10.1002/jctb.532

Google Scholar

[15] R. Vinu, G. Madras, Environmental remediation by photocatalysis, J. Indian Inst Sci. 90 (2010) 189-230.

Google Scholar

[16] Y. Liu, G. Su, B. Zhang, G. Jiang, B. Yan, Nanoparticle-based strategies for detection and remediation of environmental pollutants, Analyst. 136 (2011) 872-877.

DOI: 10.1039/c0an00905a

Google Scholar

[17] A. D. Paola, E. García-López, G. Marcí, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.

DOI: 10.1016/j.jhazmat.2011.11.050

Google Scholar

[18] N. Serpone, A. V. Emeline, S. Horikoshi, V. N. Kuznetsov, V. K. Ryabchuk, On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s, Photochem. Photobiol. Sci. 11(2012) 1121-1150.

DOI: 10.1039/c2pp25026h

Google Scholar

[19] A. Kudo, Photocatalysis and solar hydrogen production, Pure Appl. Chem. 79 (2007) 1917-(1927).

Google Scholar

[20] K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor–solution interfaces, J. Appl. Electrochem. 37 (2007) 765-787.

DOI: 10.1007/s10800-007-9333-1

Google Scholar

[21] M. Kitano, K. Tsujimaru, M. Anpo, Hydrogen production using highly active titanium oxide-based photocatalysts, Top. Catal. 49 (2008) 4-17.

DOI: 10.1007/s11244-008-9059-2

Google Scholar

[22] J. Zhu, M. Zäch, Nanostructured materials for photocatalytic hydrogen production, Curr. Opin. Colloid Interface Sci. 14 (2009) 260-269.

DOI: 10.1016/j.cocis.2009.05.003

Google Scholar

[23] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503-6570.

DOI: 10.1021/cr1001645

Google Scholar

[24] J. H. Kou, J. Gao, Z. S. Li, Z. G. Zou, Research on photocatalytic degradation properties of organics with different new photocatalysts, Curr. Org. Chem. 14 (2010) 728-744.

DOI: 10.2174/138527210790963430

Google Scholar

[25] D. Zhang, G. Li, J. C. Yu, Advanced photocatalytic nanomaterials for degradation pollutants and generating fuels by sunlight, in L. Zang (Eds. ), Energy efficiency and renewable energy through nanotechnology, green energy and technology, Springer-Verlag Ltd., London, 2011, pp.679-716.

DOI: 10.1007/978-0-85729-638-2_20

Google Scholar

[26] A. Mills, R. H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev. 22 (1993) 417- 425.

DOI: 10.1039/cs9932200417

Google Scholar

[27] X-L. Fang, C. Chen, M-S. Jin, Q. Kuang, Z-X. Xie, S-Y. Xie, R-B. Huang, L-S. Zheng, Single-crystal-like hematite colloidal nanocystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem. 19 (2009).

DOI: 10.1039/b905034e

Google Scholar

[28] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res. 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[29] S. H. S. Chan, T. Y. Wu, J. C. Juan, C. Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Techno. Biotechnol. 86 (2011) 1130-1158.

DOI: 10.1002/jctb.2636

Google Scholar

[30] S. Ran, Y. Zhu, H. Huang, B. Liang, J. Xu, B. Liu, J. Zhang, Z. Xie, Z. Wang, J. Ye, D. Chen, G. Shen, Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment, CrystEngComm. 14 (2012).

DOI: 10.1039/c2ce06308e

Google Scholar

[31] E. Fujita, J. T. Muckerman, K. Domen, A current perspective on photocatalysis, ChemSusChem 4 (2011) 155-157.

DOI: 10.1002/cssc.201100040

Google Scholar

[32] S. Linic, P. Christopher, D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10 (2011) 911-921.

DOI: 10.1038/nmat3151

Google Scholar

[33] C. Li, F. Wang, J. C. Yu, Semiconductor/bimolecular composites for solar energy applications, Energy Environ. Sci. 4 (2011) 100-113.

Google Scholar

[34] H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures, Energy Environ. Sci. 5 (2012) 6732-6743.

DOI: 10.1039/c2ee03447f

Google Scholar

[35] D. Chen, Design, synthesis and properties of highly functional nanostructured photocatalysts, Recent Patents Nanotechnol. 2 (2008) 183-189.

DOI: 10.2174/187221008786369660

Google Scholar

[36] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges, Adv. Mater. 24 (2012) 229-251.

DOI: 10.1002/adma.201102752

Google Scholar

[37] M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy. Environ. Sci. 4 (2011) 3275-3286.

DOI: 10.1039/c1ee01577j

Google Scholar

[38] Y. Mao, T-J. Park, S. S. Wong, Synthesis of classes of ternary metal oxide nanostructures, Chem. Commun. (2005) 5721-5735.

DOI: 10.1039/b509960a

Google Scholar

[39] Y-W. Jun, J-S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem. Int. Ed. 45 (2006) 3414-3439.

DOI: 10.1002/anie.200503821

Google Scholar

[40] C. Hu, Y. Xi, H. Liu, Z. L. Wang, Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures, J. Mater. Chem. 19 (2009) 858-868.

DOI: 10.1039/b816304a

Google Scholar

[41] I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale. 2 (2010) 1358-1374.

DOI: 10.1039/b9nr00377k

Google Scholar

[42] S. Shen, X. Wang, Controlled growth of inorganic nanocrystals: size and surface effects of nuclei, Chem. Commun. 46 (2010) 6891-6899.

DOI: 10.1039/c0cc00900h

Google Scholar

[43] J. H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X. S. Zhao, Porous photocatalysts for advanced water purifications, J. Mater. Chem. 20 (2010) 4512-4528.

DOI: 10.1039/b925523k

Google Scholar

[44] G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations, Angew. Chem. Int. Ed. 50 (2011) 826-859.

DOI: 10.1002/anie.201000235

Google Scholar

[45] G. Liu, J. C. Yu, G. Q. Lu, H-M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties, Chem. Comm. 47 (2011) 6763-6783.

DOI: 10.1039/c1cc10665a

Google Scholar

[46] L. Zhou, P. Ơ Brien, Mesocrystals-properties and applications, J. Phys. Chem. Lett. 3 (2012) 620-628.

Google Scholar

[47] L. X. Song, J. Xia, Z. Dang, J. Yang, L. B. Wang, J. Chen, Formation, structure and physical properties of a series of α-MoO3 nanocrystals: from 3D to 1D and 2D, CrystEngComm. 14 (2012) 2675-2682.

DOI: 10.1039/c2ce06567c

Google Scholar

[48] M. H. Huang, P-H. Lin, Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties, Adv. Funct. Mater. 22 (2012) 14-24.

DOI: 10.1002/adfm.201101784

Google Scholar

[49] R. M. Mohamed, D. L. Mckinney, W. M. Sigmund, Enhanced nanocatalysts, Mater. Sci. Eng. R 73 (2012) 1-13.

Google Scholar

[50] A. L. Linsebigler, G. Lu, J. T. Y. Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[51] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1-21.

Google Scholar

[52] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys. 44 (2005) 8269-8285.

DOI: 10.1143/jjap.44.8269

Google Scholar

[53] U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. Rev. 9 (2008) 1-12.

DOI: 10.1016/j.jphotochemrev.2007.12.003

Google Scholar

[54] D. P. Macwan, P. N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications, J. Mater. Sci. 46 (2011) 3669-3686.

DOI: 10.1007/s10853-011-5378-y

Google Scholar

[55] X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of titanium dioxide in arsenic removal from water: a review, J. Hazard. Mater. 215-216 (2012) 1-16.

DOI: 10.1016/j.jhazmat.2012.04.023

Google Scholar

[56] M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.

DOI: 10.1039/b907933e

Google Scholar

[57] W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang, D. Liu, One-dimensional single-crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications, J. Mater. Chem. 20 (2010) 5993-6008.

DOI: 10.1039/b927224k

Google Scholar

[58] G. Liu, L. Wang, H. G. Yang, H-M. Cheng, G. Q. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring, J. Mater. Chem. 20 (2010) 831-843.

DOI: 10.1039/b909930a

Google Scholar

[59] S. G. Kumar, L. G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.

DOI: 10.1021/jp204364a

Google Scholar

[60] A. A. Ismail, D. W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms, J. Mater. Chem. 21 (2011) 11686-11707.

DOI: 10.1039/c1jm10407a

Google Scholar

[61] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon. 49 (2011) 741-772.

DOI: 10.1016/j.carbon.2010.10.010

Google Scholar

[62] A. Primo, A. Corma, H. García, Titania supported gold nanoparticles as photocatalyst, Phys. Chem. Chem. Phys. 13 (2011) 886-910.

DOI: 10.1039/c0cp00917b

Google Scholar

[63] A. S. Weber, A. M. Grady, R. T. Koodali, Lanthanide modified semiconductor photocatalysts, Catal. Sci. Technol. 2 (2012) 683-693.

DOI: 10.1039/c2cy00552b

Google Scholar

[64] T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C. 115 (2011).

DOI: 10.1021/jp109134z

Google Scholar

[65] G. D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, E. F. Vansant, ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study, J. Mater. Sci. 45 (2010) 5786-5794.

DOI: 10.1007/s10853-010-4652-8

Google Scholar

[66] D. Wang, G. Xue, Y. Zhen, F. Fu, D. Li, Monodispered Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22 (2012) 4751-4758.

DOI: 10.1039/c2jm14448d

Google Scholar

[67] J. Liu, Y. Sun, Z. Li, Ag loaded flower-like BaTiO3 nanotube arrays: fabrication and enhanced photocatalytic property, CrystEngComm. 14 (2012) 1473-1478.

DOI: 10.1039/c1ce05949a

Google Scholar

[68] M. Shang, W. Wang, W. Yin, J. Ren, S. Sun, L. Zhang, General strategy for a large-scale fabric branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications, Chem. Eur. J. 16 (2010) 11412-11419.

DOI: 10.1002/chem.201000639

Google Scholar

[69] X. An, J. C. Yu, Graphene-based photocatalytic composites, RSC Adv. 1 (2011) 1426-1434.

Google Scholar

[70] I-S. Cho, D. W. Kim, S. Lee, C. H. Kwak, S-T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D-W. Kim, K. S. Hong, Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light, Adv. Funct. Mater. 18 (2008) 2154-2162.

DOI: 10.1002/adfm.200800167

Google Scholar

[71] X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity, Chem. Eur. J. 17 (2011) 7777-7780.

DOI: 10.1002/chem.201101032

Google Scholar

[72] L-M. Lyu, W-C. Wang, M. H. Huang, Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties, Chem. Eur. J. 16 (2010) 14167-14174.

DOI: 10.1002/chem.201000563

Google Scholar

[73] L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis, Chem. Eur. J. 15 (2009) 1776-1782.

DOI: 10.1002/chem.200801234

Google Scholar

[74] Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, S. Yang, Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis, CrystEngComm. 13 (2011) 1843-1850.

DOI: 10.1039/c0ce00508h

Google Scholar

[75] H. Lu, S. Wang, L. Zhao, B. Dong, Z. Xu, J. Li, Surfactant-assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable size, RSC Adv. 2 (2012) 3374-3378.

DOI: 10.1039/c2ra01203k

Google Scholar

[76] H. Xiao, Z. Ai, L. Zhang, Nonaqueous sol−gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment, J. Phys. Chem. C. 113 (2009) 16625-16630.

DOI: 10.1021/jp9050269

Google Scholar

[77] L. Qian, J. Zhu, W. Du, X. Qian, Solvothermal synthesis, electrochemical and photocatalytic properties of monodispersed CeO2 nanocubes, Mater. Chem. Phys. 115 (2009) 835-840.

DOI: 10.1016/j.matchemphys.2009.02.047

Google Scholar

[78] H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties, J. Phys. Chem. B. 110 (2006) 13829-13834.

DOI: 10.1021/jp061934y

Google Scholar

[79] W. Zhou, B. Yan, C. Cheng, C. Cong, H. Hu, H. Fan, T. Yu, Facile synthesis and shape evolution of highly symmetric 26-facet polyhedral microcrystals of Cu2O, CrystEngComm. 11 (2009) 2291-2296.

DOI: 10.1039/b912034n

Google Scholar

[80] L. Xu, L-P. Jiang, J-J. Zhu, Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures, Nanotechnology. 20 (2009) 045605(6pp).

DOI: 10.1088/0957-4484/20/4/045605

Google Scholar

[81] Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li, G. Zou, Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature, Angew. Chem. Int. Ed. 49 (2010) 4282-4285.

DOI: 10.1002/anie.200907117

Google Scholar

[82] H. Shi, K. Yu, F. Sun, Z. Zhu, Controllable synthesis of novel Cu2O micro/nano-crystals and their photoluminescence, photocatalytic and field emission properties, CrystEngComm. 14 (2012) 278-285.

DOI: 10.1039/c1ce05868a

Google Scholar

[83] X. Meng, G. Tian, Y. Chen, Y. Qu, J. Zhou, K. Pan, W. Zhou, G. Zhang, H. Fu, Room temperature solution synthesis of hierarchical bow-like Cu2O with high visible light driven photocatalytic activity, RSC Advances, 2 (2012) 2875-2881.

DOI: 10.1039/c2ra01197b

Google Scholar

[84] S. Wang, H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang, CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres, J. Solid State. Chem. 182 (2009) 1088-1093.

DOI: 10.1016/j.jssc.2009.01.042

Google Scholar

[85] J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp, Appl. Catal. A: Gen. 406 (2011) 51-58.

DOI: 10.1016/j.apcata.2011.08.007

Google Scholar

[86] X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, CuO nanowires prepared via a facile solution route and their photocatalytic property, Mater. Lett. 72 (2012) 49-52.

DOI: 10.1016/j.matlet.2011.12.077

Google Scholar

[87] S-W. Cao, Y-J. Zhu, Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment, J. Phys. Chem. C. 112 (2008) 6253-6257.

DOI: 10.1021/jp8000465

Google Scholar

[88] J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth. Des. 9 (2009) 1474-1480.

DOI: 10.1021/cg800941d

Google Scholar

[89] X. Li, X. Yu, J. He, Z. Xu, Controllable fabrication, growth mechanisms, and photocatalytic properties of hematite hollow spindles, J. Phys. Chem. C. 113 (2009) 2837-2845.

DOI: 10.1021/jp8079217

Google Scholar

[90] L-Y. Chen, Y. Liang, Z-D. Zhang, Corundum-type In2O3 urchin-like nanostructures: synthesis derived from orthorhombic InOOH and application in photocatalysis, Eur. J. Inorg. Chem. (2009) 903-909.

DOI: 10.1002/ejic.200800956

Google Scholar

[91] L-Y. Chen, Z-X. Wang, Z-D. Zhang, Corundum-type tubular and rod-like In2O3 nanocrystals: synthesis from designed InOOH and application in photocatalysis, New. J. Chem, 33 (2009) 1109-1115.

DOI: 10.1039/b817588h

Google Scholar

[92] H. Zhao, H. Dong, L. Zhang, X. Wang, H. Yang, Controlled synthesis and photocatalytic properties of porous hollow In2O3 microcubes with different sizes, Mater. Chem. Phys. 130 (2011) 921-931.

DOI: 10.1016/j.matchemphys.2011.08.013

Google Scholar

[93] L. Cheng, M. Shao, X. Wang, H. Hu, Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties, Chem. Eur. J. 15 (2009) 2310-2316.

DOI: 10.1002/chem.200802182

Google Scholar

[94] Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J-J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties, CrystEngComm. 12 (2010) 3740-3747.

DOI: 10.1039/c000744g

Google Scholar

[95] X. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties, J. Phys. Chem. C. 112 (2008) 15299-15305.

DOI: 10.1021/jp804921g

Google Scholar

[96] S. Shang, K. Xue, D. Chen, X. Jiao, Preparation and characterization of rose-like NiO nanostructures, CrystEngComm. 13 (2011) 5094-5099.

DOI: 10.1039/c0ce00975j

Google Scholar

[97] L. Shi, H. Lin, Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment, Langmuir, 26 (2010) 18718-18722.

DOI: 10.1021/la103769d

Google Scholar

[98] Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications, CrystEngComm. 13 (2011) 3506-3510.

DOI: 10.1039/c1ce05171g

Google Scholar

[99] S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, N. Petrova, Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity, J. mater. Chem. 16 (2006).

DOI: 10.1039/b514632a

Google Scholar

[100] N. Lakshminarasimhan, W. Kim, W. Choi, Effect of the agglomerated state on the photocatalytic hydrogen production with in situ agglomeration of colloidal TiO2 nanoparticles, J. Phys. Chem. C. 112 (2008) 20451-20457.

DOI: 10.1021/jp808541v

Google Scholar

[101] B. Zhao, F. Chen, Q. Huang, J. Zhang, Brookite TiO2 nanoflowers, Chem. Commun. (2009) 5115-5117.

DOI: 10.1039/b909883f

Google Scholar

[102] S-J. Liu, X-X. Wu, B. Hu, J-Y. Gong, S-H. Yu, Novel anatase TiO2 boxes and tree-like structures assembled by hollow tubes: D, L-malic acid-assisted hydrothermal synthesis, growth mechanism, and photocatalytic properties, Cryst. Growth. Des. 9 (2009).

DOI: 10.1021/cg8010597

Google Scholar

[103] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis, Chem. Commun. 46 (2010) 1664-1666.

DOI: 10.1039/b924172h

Google Scholar

[104] X. Meng, D-W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y-H. Han, V. Bhoraskar, J-B. Yoo, Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity, CrystEngComm. 13 (2011).

DOI: 10.1039/c0ce00765j

Google Scholar

[105] H. Zhang, G. Du, W. Lu, L. Cheng, X. Zhu, Z. Jiao, Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties, CrystEngComm. 14 (2012) 3793-3801.

DOI: 10.1039/c2ce06731e

Google Scholar

[106] Y. Aoyama, Y. Oaki, R. Ise, H. Imai, Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst, CrystEngComm. 14 (2012) 1405-1411.

DOI: 10.1039/c1ce05774j

Google Scholar

[107] B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities, Nanotechnology 17 (2006) 2560-2566.

DOI: 10.1088/0957-4484/17/10/020

Google Scholar

[108] T. F-R. Shen, M-H. Lai, T. C-K. Yang, I-P. Fu, N-Y. Liang, W-T. Chen, Photocatalytic production of hydrogen by vanadium oxides under visible light irradiation, J. Taiwan Inst. Chem. Eng. 43 (2012) 95-101.

DOI: 10.1016/j.jtice.2011.06.004

Google Scholar

[109] D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater. 18 (2008) 1922-(1928).

DOI: 10.1002/adfm.200701468

Google Scholar

[110] A. M-D. La Cruz, D. S. Martínez, E. L. Cuéllar, Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation, Solid State Sci. 12(2010) 88-94.

DOI: 10.1016/j.solidstatesciences.2009.10.010

Google Scholar

[111] F. Lu, W. Cai, Y. Zhang, ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater. 18 (2008) 1047-1056.

DOI: 10.1002/adfm.200700973

Google Scholar

[112] L. Xu, Y-L. Hu, C. Pelligra, C-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater. 21 (2009).

DOI: 10.1021/cm900608d

Google Scholar

[113] B. Li, Y. Wang, Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures, J. Phys. Chem. C. 114 (2010) 890-896.

DOI: 10.1021/jp909478q

Google Scholar

[114] G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity, J. Phys. Chem. C. 115 (2011) 7145-7152.

DOI: 10.1021/jp110256s

Google Scholar

[115] Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng, T. Ge, Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance, CrystEngComm. 13 (2011) 2137-2142.

DOI: 10.1039/c0ce00741b

Google Scholar

[116] J-Y. Dong, W-H. Lin, Y-J. Hsu, D. S-H. Wong, S-Y. Lu, Ultrafast formation of ZnO mesocrystals with excellent photocatalytic activities by a facile tris-assisted antisolvent process, CrystEngComm. 13 (2011) 6218-6222.

DOI: 10.1039/c1ce05503h

Google Scholar

[117] T. Zhai, S. Xie, Y. Zhao, X. Sun, X. Lu, M. Yu, M. Xu, F. Xiao, Y. Tong, Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity, CrystEngComm. 14 (2012) 1850-1855.

DOI: 10.1039/c1ce06013a

Google Scholar

[118] H. Zheng, K. Liu, H. Cao, X. Zhang, L-Lysine-assisted synthesis of ZrO2 nanocrystals and their application in photocatalysis, J. Phys. Chem. C. 113 (2009) 18259-18263.

DOI: 10.1021/jp9057324

Google Scholar

[119] Z. Shu, X. Jiao, D. Chen, Synthesis and photocatalytic properties of flower-like zirconia nanostructures, CrystEngComm. 14 (2012) 1122-1127.

DOI: 10.1039/c1ce06155k

Google Scholar

[120] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 6490-6492.

DOI: 10.1021/ja2002132

Google Scholar

[121] Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, J. Ye, Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges, Chem. Commun. 48 (2012) 3748-3750.

DOI: 10.1039/c2cc30363a

Google Scholar

[122] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, CrystEngComm. 14 (2012) 2966-2973.

DOI: 10.1039/c2ce06425a

Google Scholar

[123] M. Ge, N. Zhu, Y. Zhao, J. Li, L. Liu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res. 51 (2012) 5167-5173.

DOI: 10.1021/ie202864n

Google Scholar

[124] X. Zhang, J. Lv, L. Bourgeois, J. Cui, Y. Wu, H. Wang, P. A. Webley, Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies, New. J. Chem. 35 (2011) 937-941.

DOI: 10.1039/c1nj00008j

Google Scholar

[125] Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation, J. Mol. Catal. A. Chem. 303 (2009) 9-14.

DOI: 10.1016/j.molcata.2008.12.010

Google Scholar

[126] A. M-D. La Cruz, S. O. Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: Photoassisted degradation of organic dyes under vis-irradiation, 320 (2010) 85-91.

DOI: 10.1016/j.molcata.2010.01.008

Google Scholar

[127] G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts, J. Mater. Chem. 21 (2011) 887-892.

DOI: 10.1039/c0jm03040f

Google Scholar

[128] C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang, X. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres, CrystEngComm. 14 (2012) 3602-3608.

DOI: 10.1039/c2ce06757a

Google Scholar

[129] J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, F. Xu, Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands, J. Mater. Chem. 21 (2011) 3872-3876.

DOI: 10.1039/c0jm03252b

Google Scholar

[130] C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, 17 (2005) 3537-3545.

DOI: 10.1021/cm0501517

Google Scholar

[131] L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem. 17 (2007) 2526-2532.

DOI: 10.1039/b616460a

Google Scholar

[132] Y. Li, J. Liu, X. Huang, Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures, Nanoscale. Res. Lett. 3 (2008) 365-371.

DOI: 10.1007/s11671-008-9168-7

Google Scholar

[133] D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan, Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability, J. Phys. Chem. C. 113 (2009).

DOI: 10.1021/jp810726d

Google Scholar

[134] X-J. Dai, Y-S. Luo, W-D. Zhang, S-Y. Fu, Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area, Dalton Trans. 39 (2010) 3426-3432.

DOI: 10.1039/b923443h

Google Scholar

[135] Z. Chen, L. Qian, J. Zhu, Y. Yuan, X. Qian, Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 12 (2010) 2100-2106.

DOI: 10.1039/b921228k

Google Scholar

[136] L. Xu, X. Yang, Z. Zhai, W. Hou, EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities, CrystEngComm. 13 (2011) 7267-7275.

DOI: 10.1039/c1ce05671a

Google Scholar

[137] X-F. Cao, L. Zhang, X-T. Chen, Z-L. Xue, Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties, CrystEngComm. 13 (2011) 306-311.

DOI: 10.1039/c0ce00031k

Google Scholar

[138] D. He, L. Wang, H. Li, T. Yan, D. Wang, T. Xie, Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: synthesis, photo-induced charges transfer properties, and photocatalytic activities, CrystEngComm. 13 (2011) 4053-4059.

DOI: 10.1039/c0ce00918k

Google Scholar

[139] L. Wang, W. Wang, M. Shang, S. Sun, W. Yin, J. Ren, J. Zhou, Visible light responsive bismuth niobate photocatalyst: enhanced contaminant degradation and hydrogen generation, J. Mater. Chem. 20 (2010) 8405-8410.

DOI: 10.1039/c0jm01669a

Google Scholar

[140] M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis, CrystEngComm. 12 (2010) 1754-1758.

DOI: 10.1039/b923115c

Google Scholar

[141] X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites, Mater. Chem. Phys. 125 (2011).

DOI: 10.1016/j.matchemphys.2010.08.071

Google Scholar

[142] H. Li, G. Liu, S. Chen, Q. Liu, W. Lu, Synthesis and characterization of monoclinic BiVO4 nanorods and nanoplates via microemulsion-mediated hydrothermal method, Physica E. 43 (2011) 1323-1328.

DOI: 10.1016/j.physe.2011.01.018

Google Scholar

[143] M. Han, X. Chen, T. Sun, K. Tan, M. S. Tse, Synthesis of mono-dispersed m-BiVO4 octahedral nano-crystals with enhanced visible light photocatalytic properties, CrystEngComm. 13 (2011) 6674-6679.

DOI: 10.1039/c1ce05539a

Google Scholar

[144] L. Zhou, W. Wang, H. Xu, S. Sun, . Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property, Cryst. Growth. Des. 8 (2008) 3595-3601.

DOI: 10.1021/cg800077h

Google Scholar

[145] D. Li, Y. Zhu, Synthesis of CdMoO4 microspheres by self-assembly and photocatalytic performances, CrystEngComm. 14 (2012) 1128-1134.

DOI: 10.1039/c1ce05838j

Google Scholar

[146] M. Dong, Q. Lin, H. Sun, D. Chen, T. Zhang, Q. Wu, S. Li, Synthesis of cerium molybdate hierarchical architectures and their novel photocatalytic and adsorption performances, Cryst. Growth. De. 11 (2011) 5002-5009.

DOI: 10.1021/cg200904t

Google Scholar

[147] L. Zhang, X-F. Cao, Y-L. Ma, X-T. Chen, Z-L. Xue, Pancake-like Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties, New. J. Chem. 34 (2010) 2027-(2033).

DOI: 10.1039/c0nj00048e

Google Scholar

[148] J. Zeng, H. Wang, Y. C. Zhang, M. K. Zhu,H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C. 111 (2007) 11879-11887.

DOI: 10.1021/jp0684628

Google Scholar

[149] I-S. Cho, C. H. Kwak, D. W. Kim, S. Lee, K. S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C. 113 (2009) 10647-10653.

DOI: 10.1021/jp901557z

Google Scholar

[150] I-S. Cho, S. Lee, J. H. Noh, D. W. Kim, D. K. Lee, H. S. Jung, D-W. Kim, K.S. Hong, SrNb2O6 nanotubes with enhanced photocatalytic activity, J. Mater. Chem. 20 (2010) 3979-3983.

DOI: 10.1039/b926694a

Google Scholar

[151] J. Lin, J. Lin, Y. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372-8378.

DOI: 10.1021/ic701036k

Google Scholar

[152] R. Shi, Y. Wang, F. Zhou, Y. Zhu, Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance, J. Mater. Chem. 21 (2011) 6313-6320.

DOI: 10.1039/c0jm04451b

Google Scholar

[153] J. Xu, C. Hu, Y. Xi, B. Wan, C. Zhang, Y. Zhang, Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires, Solid State Sci. 14 (2012) 535-539.

DOI: 10.1016/j.solidstatesciences.2012.01.013

Google Scholar

[154] S. Li, Y-H. Lin, B-P. Zhang, Y. Wang, C-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C. 114 (2010) 2903-2908.

DOI: 10.1021/jp910401u

Google Scholar

[155] Y. Huo, M. Miao, Y. Zhang, J. Zhu, H. Li, Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability, Chem. Commun. 47 (2011) 2089-(2091).

DOI: 10.1039/c0cc04247a

Google Scholar

[156] L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets, Cryst. Growth. Des. 11 (2011) 1049-1053.

DOI: 10.1021/cg101144s

Google Scholar

[157] W. Wang, J. Bi, L. Wu, Z. Li, X. Fu, Hydrothermal synthesis and catalytic performances of a new photocatalyst CaSnO3 with microcube morphology, Scripta Mater. 60 (2009) 186-189.

DOI: 10.1016/j.scriptamat.2008.10.001

Google Scholar

[158] D. Chen, J. Ye, SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties, Chem. Mater. 19 (2007) 4585-4591.

Google Scholar

[159] Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity, J. Colloid. Interface. Sci. 358 (2011) 68-72.

DOI: 10.1016/j.jcis.2011.02.032

Google Scholar

[160] P. Tang, H. Chen, F. Cao, G. Pan, Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts, Catal. Sci. Technol. 1 (2011) 1145-1148.

DOI: 10.1039/c1cy00199j

Google Scholar

[161] C. Fang, B. Geng, J. Liu, F. Zhan, D-fructose molecule template route to ultra-thin ZnSnO3 nanowire architectures and their application as efficient photocatalyst, Chem. Commun. (2009) 2350-2352.

DOI: 10.1039/b821459j

Google Scholar

[162] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715-719.

DOI: 10.1016/j.jallcom.2008.09.104

Google Scholar

[163] X. Hou, J. Feng, X. Xu, M. Zhang, Synthesis and characterizations of spinel MnFe2O4 nanorod by seed–hydrothermal route, J. Alloys Compd. 491 (2010) 258-263.

DOI: 10.1016/j.jallcom.2009.10.029

Google Scholar

[164] P. Guo, G. Zhang, J. Yu, H. Li, X. S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite, Colloids Surf. A: Physicochem. Eng. Aspects. 395 (2012) 168-174.

DOI: 10.1016/j.colsurfa.2011.12.027

Google Scholar

[165] B. Cui, H. Lin, Y-Z. Liu, J-B. Li, P. Sun, X-C. Zhao, C-J. Liu, Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets, J. Phys. Chem. C. 113 (2009) 14083-14087.

DOI: 10.1021/jp900028t

Google Scholar

[166] S-W. Cao, Y-J. Zhu, G-F. Cheng, Y-H. Huang, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazard. Mater. 171 (2009) 431-435.

DOI: 10.1016/j.jhazmat.2009.06.019

Google Scholar

[167] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light, J. Mater. Chem. 20 (2010) 3665-3672.

DOI: 10.1039/b919897k

Google Scholar

[168] X. Li, Y. Hou, Q. Zhao, L. Wang, A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation, J. Colloid. Interface. Sci. 358 (2011) 102-108.

DOI: 10.1016/j.jcis.2011.02.052

Google Scholar

[169] J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, R. Chen, BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances, CrystEngComm. 13 (2011) 2381-2390.

DOI: 10.1039/c0ce00705f

Google Scholar

[170] T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 13 (2011) 4010-4017.

DOI: 10.1039/c1ce05113j

Google Scholar

[171] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance, RSC Advances. 1 (2011) 1542-1553.

DOI: 10.1039/c1ra00335f

Google Scholar

[172] G. Li, K. Chao, C. Ye, H. Peng, . One-step synthesis of Ag nanoparticles supported on AgVO3 nanobelts, Mater. Lett. 62 (2008) 735-738.

DOI: 10.1016/j.matlet.2007.06.046

Google Scholar

[173] X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, H. Zhu, Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Green Chem. 12 (2010) 414-419.

DOI: 10.1039/b921696k

Google Scholar

[174] S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity, Appl. Catal. B. 119-120 (2012) 146-155.

DOI: 10.1016/j.apcatb.2012.02.020

Google Scholar

[175] H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Chem. Commun, (2009) 7524-7526.

DOI: 10.1039/b917052a

Google Scholar

[176] G. Zhu, W. Que, J. Zhang, Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation, J. Alloys Compd. 509 (2011) 9479-9486.

DOI: 10.1016/j.jallcom.2011.07.046

Google Scholar

[177] J. Liu, Y. Sun, Z. Li, Ag loaded flower-like BaTiO3 nanotube arrays: fabrication and enhanced photocatalytic property, CrystEngComm. 14 (2012) 1473-1478.

DOI: 10.1039/c1ce05949a

Google Scholar

[178] D. Wang, G. Xue, Y. Zhen, F. Fu, D. Li, Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22 (2012) 4751-4758.

DOI: 10.1039/c2jm14448d

Google Scholar

[179] S. Anandan, P. Sathish Kumr, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88, Sol. Energy Mater. Sol. Cells. 92 (2008) 929-937.

DOI: 10.1016/j.solmat.2008.02.020

Google Scholar

[180] S. Anandan, G-J. Lee, P-K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods, Ind. Eng. Chem. Res. 49 (2010) 9729-9737.

DOI: 10.1021/ie101361c

Google Scholar

[181] P-K. Chen, G-J. Lee, S. Anandan, J. J. Wu, Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II, Mater. Sci. Eng. B. 177 (2012) 190-196.

DOI: 10.1016/j.mseb.2011.12.001

Google Scholar

[182] M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nature. Chem. 3 (2011).

DOI: 10.1038/nchem.1048

Google Scholar

[183] D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers, Chem. Mater. 21 (2009) 3479-3484.

DOI: 10.1021/cm900225p

Google Scholar

[184] W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 Nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity, 2 (2010) 2385-2392.

DOI: 10.1021/am100394x

Google Scholar

[185] Y. Zhou, F. Krumeich, A. Heel, G. R. Patzke, One-step hydrothermal coating approach to photocatalytically active oxide composites, Dalton. Trans. 39 (2010) 6043-6048.

DOI: 10.1039/b926790e

Google Scholar

[186] G. Colón, S. M. López, M. C. Hidalgo, J. A. Navío, Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamine B degradation, Chem. Commun. 46 (2010) 4809-4811.

DOI: 10.1039/c0cc00058b

Google Scholar

[187] T. Cao, Y. Li, C. Wang, L. Wei, C. Shao, Y. Liu, Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/ TiO2 nanofibers heterostructures, Mater. Res. Bull, 45 (2010) 1406-1412.

DOI: 10.1016/j.materresbull.2010.06.043

Google Scholar

[188] S. Jung, K. Yong, Fabrication of CuO–ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications, Chem. Commun. 47 (2011) 2643-2645.

DOI: 10.1039/c0cc04985a

Google Scholar

[189] J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces. 4 (2012) 424-430.

DOI: 10.1021/am201499r

Google Scholar

[190] J. Lin, J. Shen, R. Wang, J. Cui, W. Zhou, P. Hu, D. Liu, H. Liu, J. Wang, R. I. Boughton, Y. Yue, Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity, 21 (2011) 5106-5113.

DOI: 10.1039/c0jm04131a

Google Scholar

[191] J. Kang, Q. Kung, Z-X. Xie, L-S. Zheng, Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property, J. Phys. Chem. C. 115 (2011) 7874-7879.

DOI: 10.1021/jp111419w

Google Scholar

[192] C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 Nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties, Inorg. Chem. 48 (2009) 7261-7268.

DOI: 10.1021/ic9005983

Google Scholar

[193] W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R. I. Boughton, D. Liu, H. Jiang, Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance, J. Mater. Chem. 21 (2011).

DOI: 10.1039/c1jm10588d

Google Scholar

[194] Y. Wang, J. Zhang, L. Liu, C. Zhu, X. Liu, Q. Su, Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning, Mater. Lett. 75 (2012) 95-98.

DOI: 10.1016/j.matlet.2012.01.074

Google Scholar

[195] M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, . Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c1jm13470a

Google Scholar

[196] J. Mu, C. Shao, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, B. Chen, Y. Liu, In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity, J. Mater. Chem. 22 (2012) 1786-1793.

DOI: 10.1039/c1jm13577e

Google Scholar

[197] L. Kong, W. Chen, D. Ma, Y. Yang, S. Liu, S. Huang, Size control of Au@Cu2O octahedra for excellent photocatalytic performance, J. Mater. Chem. 22 (2012) 719-724.

DOI: 10.1039/c1jm13672k

Google Scholar

[198] W-S. Wang, L. Zhen, C-Y. Xu, W-Z. Shao, Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core−shell microspheres, Cryst. Growth. Des. 9 (2009) 1558-1568.

DOI: 10.1021/cg801194j

Google Scholar

[199] Y. Wang, S. Li, X. Xing, F. Huang, Y. Shen, A. Xie, X. Wang, J. Zhang, Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures and their enhanced photocatalytic activity under visible light, Chem. Eur. J. 17 (2011).

DOI: 10.1002/chem.201001846

Google Scholar

[200] Z. Wang, S. Zhu, S. Zhao, H. Hu, Synthesis of core–shell Fe3O4@SiO2@MS (M= Pb, Zn, and Hg) microspheres and their application as photocatalysts, J. Alloys Compd. 509 (2011) 6893-6898.

DOI: 10.1016/j.jallcom.2011.03.175

Google Scholar

[201] Y-L. Min, K. Zhang, Y-C. Chen, Y-G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Sep. Purfi. Technol. 86 (2012} 98-105.

DOI: 10.1016/j.seppur.2011.10.025

Google Scholar

[202] E. Gao, W. Wang, M. Shang, J. Xu, Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite, Phys. Chem. Chem. Phys. 13 (2011) 2887-2893.

DOI: 10.1039/c0cp01749c

Google Scholar

[203] Y. Fu, X. Sun, X. Wang, BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Mater. Chem. Phys. 131 (2011) 325-320.

DOI: 10.1016/j.matchemphys.2011.09.049

Google Scholar

[204] S. Liu, J. Tian, L. Wang, L. Wang, Y. Luo, X. Sun, One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes, Catal. Sci. Technol. 2 (2012) 339-344.

DOI: 10.1039/c1cy00374g

Google Scholar

[205] J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W-J. Moon, D-M. Song, Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water, RSC Advances, 2 (2012) 1356-1363.

DOI: 10.1039/c1ra00621e

Google Scholar

[206] B. Li, H. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem. 21 (2011) 3346-3349.

DOI: 10.1039/c0jm03253k

Google Scholar

[207] X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, J. Alloys Compd. 524 (2012) 13-21.

DOI: 10.1016/j.jallcom.2012.02.052

Google Scholar

[208] Z. Liu, H. Bai, D. D. Sun, Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications, New. J. Chem. 35 (2011) 137-140.

DOI: 10.1039/c0nj00593b

Google Scholar

[209] D. Jian, P-X. Gao, W. Cai, B. S. Allimi, S. P. Alpay, Y. Ding, Z. L. Wang, C. Brooks, Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr)CoO3 composite nanorod arrays, J. Mater. Chem. 19 (2009) 970-975.

DOI: 10.1039/b817235h

Google Scholar

[210] S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors, Dyes Pigments. 76 (2008) 535-541.

DOI: 10.1016/j.dyepig.2006.09.014

Google Scholar

[211] P. Sathish kumar, M. Ruby raj, S. Anandan, Nanoporous Au–TiMCM-41—an inorganic hybrid photocatalyst toward visible photooxidation of methyl orange, Sol. Energy Mater. Sol. Cells. 94 (2010) 1783-1789.

DOI: 10.1016/j.solmat.2010.05.046

Google Scholar

[212] X. An, J. C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing, J. Mater. Chem. 22 (2012) 8525-8531.

DOI: 10.1039/c2jm16709c

Google Scholar