Sonochemical Decolourisation of Reactive Blue 21 and Acid Red 114 in the Presence of TiO2 and Rare Earths

Article Preview

Abstract:

The ultrasonic decolourisation of two commonly used textile dyes, Acid Red 114 (AR 114) and Reactive Blue 21 (RB 21), with different chromophoric groups, azo and phthalocyanine respectively, has been studied using TiO2 (consisting of mixture of crystalline and amorphous phases) in the presence of rare earths ions (Pr3+, Ce4+). The characterisation of TiO2 has been done through X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, diffuse reflectance spectroscopy (DRS) and N2 adsorption techniques. The decolourisation of AR 114 was faster than for RB 21 under all the experimental conditions. Almost complete decolourisation of both dyes was achieved in 5 min in the presence of US+TiO2+Ce. Ce4+ was found to be more effective than Pr3+. The decolourisation reaction followed second order kinetics. The effects of initial dye concentration and amount of TiO2 on the decolourisation of dyes have been found to be in the order; US+TiO2+Ce > US+TiO2+Pr > US+Ce > US+Pr > US+TiO2 > TiO2 >US. The decolourisation rate increased with increase in TiO2 amount and decreased with increase in initial dye concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-246

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.N. Rashed, A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, Int. J. Phys. Sci. 2 (2007) 73-81.

Google Scholar

[2] J.T. Li, B. Bai, Y.L. Song, Degradation of Acid Orange 3 in aqueous solution by combination of fly ash/H2O2 and ultrasound irradiation, Indian J. Chem. Technol. 17 (2010) 198-203.

Google Scholar

[3] M.S. Khehra, H.S. Saini, D.K. Sharma, B.S. Chadha, S.S. Chimni, Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes, Water Res. 39 (2005) 5135-5141.

DOI: 10.1016/j.watres.2005.09.033

Google Scholar

[4] S. Netpradit, P. Thiravetyan, S. Towprayoon, Application of waste, metal hydroxide sludge for adsorption of azo reactive dyes, Water Res. 37 (2003) 763-772.

DOI: 10.1016/s0043-1354(02)00375-5

Google Scholar

[5] S. Meric, H. Selcuk, V. Belgiorno, Acute Toxicity Removal in Textile Finishing Waste Water byFenton's Oxidation, Ozone and Coagulation-Flocculation Processes, Water Res. 39 (2005) 1147-1153.

DOI: 10.1016/j.watres.2004.12.021

Google Scholar

[6] J.S. Ledakowicz, T. Koprowski, W. Machnowski, H.H. Knudsen, Membrane filtration of textile dyehouse wastewater for technological water reuse, Desalination. 119 (1998) 1-9.

DOI: 10.1016/s0011-9164(98)00078-2

Google Scholar

[7] J.A. Laslo, Regeneration of Azo Dye-Saturated Cellulosic Anion Exchange Resin by Burkholderiacepacia Anaerobic Dye Reduction, Environ. Sci. Technol. 34 (2000) 167-172.

DOI: 10.1021/es990918u

Google Scholar

[8] I. Bridgeman, A.T. Peters, Photochemical Degradation of Aminoazobenzene Disperse Dyes in Ethanolic solution: Part I: Effect of Concentration, Water, and Temperature, Text. Res.J. 44 (1974) 639-645.

DOI: 10.1177/004051757404400901

Google Scholar

[9] X. Wang, J. Jia, Y. Wang, Electrochemical degradation of reactive dye in the presence of water jet cavitation, Ultrason. Sonochem. 17 (2010) 515-520.

DOI: 10.1016/j.ultsonch.2009.10.023

Google Scholar

[10] W.S. Kuo, P.H. Ho, Solar photocatalytic decolorization of methylene blue in water, Chemosphere. 45 (2001) 77-83.

DOI: 10.1016/s0045-6535(01)00008-x

Google Scholar

[11] N. Capalash, P. Sharma, Biodegradation of Textile Azo Dyes by Phanerochaete chrysoporium, World J. Microbiol. Biotechnol. 8 (1992) 309-312.

DOI: 10.1007/bf01201886

Google Scholar

[12] D.K. Sharma, H.S. Saini, M. Singh, S.S. Chimni, B.S. Chadha, Biological treatment of textile dyeacid violet-17 by bacterial consortium in an up-flow immobilized cell bioreactor, Lett. Appl. Microbiol. 38 (2004) 345-350.

DOI: 10.1111/j.1472-765x.2004.01500.x

Google Scholar

[13] S. Palamthodi, D. Patil, Y. Patil, Microbial degradation of textile industrial effluents, Afr. J. Biotechnol. 10 (2011) 12657-12661.

DOI: 10.5897/ajb11.1618

Google Scholar

[14] T.J. Mason, Ultrasound in synthetic organic chemistry, Chem. Soc. Rev. 26 (1997) 443-451.

Google Scholar

[15] P.R. Goate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybridmethods, Adv. Environ. Res. 8 (2004) 553-597.

Google Scholar

[16] F. Chen, J. Zhao, H. Hidaka, Adsorption factor and photocatalytic degradation of dye constituent aromatics on the surface of TiO2 in the presence of phosphate anions, Res. Chem. Intermed. 29 (2003) 733-748.

DOI: 10.1163/156856703322601744

Google Scholar

[17] M. Smelcerovic, D. Dordevic, M. Novakovic, M. Mizdrakovic, Decolorization of a textile vat dye by adsorption on waste ash, J. Serb. Chem. Soc. 75(2010) 855-872.

DOI: 10.2298/jsc090724057s

Google Scholar

[18] S. Dai, Y. Wu, T. Sakai, Z. Du, H. Sakai, M. Abe, Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/ Cetyltrimethyammonium Bromide Nanoskeleton, Nanoscale Res. Lett. 5(2010).

DOI: 10.1007/s11671-010-9720-0

Google Scholar

[19] G. Bertoni, E. Beyers, J. Verbeeck, M. Mertens, P. Cool, E.F. Vansant, G.V. Tendeloo, Quantification of crystalline and amorphous content in porous TiO2 samples from electron energy loss spectroscopy, Ultramicroscopy. 106 (2006) 630-635.

DOI: 10.1016/j.ultramic.2006.03.006

Google Scholar

[20] E.J. Fontenot, Y.H. Lee, R.D. Matthews, G. Zhu, S.C. Pavlostathis, Reductive decolorization of a textile reactive dye bath under methanogenic conditions, Appl. Biochem. Biotechnol. 109 (2003) 207-225.

DOI: 10.1385/abab:109:1-3:207

Google Scholar

[21] W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today. 124 (2007) 133-148.

DOI: 10.1016/j.cattod.2007.03.031

Google Scholar

[22] X.K. Wang, G.H. Chen, W.L. Guo, Sonochemical degradation kinetics of Methyl Violet in aqueous solutions, Molecules, 8 (2003) 40-44.

DOI: 10.3390/80100040

Google Scholar

[23] J.B. Ji, X.H. Lu, Z.C. Xu, Effect of ultrasound on adsorption of Geniposide on polymeric resin, Ultrason. Sonochem. 13 (2006) 463-470.

DOI: 10.1016/j.ultsonch.2005.08.004

Google Scholar

[24] S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88, Sol. Energy Mater. Sol. Cells. 92 (2008) 929-937.

DOI: 10.1016/j.solmat.2008.02.020

Google Scholar

[25] C.H. Liang, F.B. Li, C.S. Liu, J.L. Lu, X.G. Wang, The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of orange I, Dyes Pigm. 76 (2008) 477-484.

DOI: 10.1016/j.dyepig.2006.10.006

Google Scholar

[26] J.W. Shi, J.T. Zheng, P. Wu, Preparation, characterization and photocatalytic activities of holium-doped titanium dioxide nanoparticles, J. Hazard. Mater. 161 (2009) 416-422.

DOI: 10.1016/j.jhazmat.2008.03.114

Google Scholar