Photo-Catalytic Activity of Carbon/Nitrogen Doped TiO2-SiO2 under UV and Visible Light Irradiation

Article Preview

Abstract:

The sol gel synthesis method was used to prepare carbon and nitrogen doped titanium dioxide (TiO2) photo-catalyst using titanium tetrachloride (TiCl4) as the precursor. Doping was carried out to modify the absorption band edge of titanium dioxide. To avert the problem associated with use of powder TiO2, the photo-catalyst was immobilized on glass support using tetraethyl orthosilicate (TEOS), which served as a binder and precursor for silicon dioxide (SiO2). The prepared photo-catalytic materials were characterized by FT-IR, XRD, TEM, BET and DRS. The photo-catalytic efficiency of titanium dioxide immobilized on glass support was evaluated using the degradation of methyl orange (MeO) and phenol red (PRed) under ultraviolet and visible light irradiation. Doping with carbon and nitrogen, and incorporation of silicon dioxide into the titanium dioxide matrix allowed utilization of visible light by the prepared TiO2-SiO2 nanocomposites. Photo-degradation tests were carried out for doped and undoped photo-catalyst. An increased rate of photo-oxidation of methyl orange and phenol red was observed under visible light irradiation as compared to UV light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-236

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C. 1 (2000) 1.

Google Scholar

[2] D.A. Tryk, A. Fujishima, K. Honda, Electrochim. Acta. 45 (2000) 2363.

Google Scholar

[3] B.R. Eggins, J.A. Byrne, N.M.D. Brown, B. McKinney, M. Rouse, Applied Catalysis B: Environmental, 17 (1998) 25-36.

Google Scholar

[4] E. Puzenat, T. Sano, C. Guillard, C. Geantet, S. Matsuzawa, N. Negishi, Journal of Physical Chemistry. 113(14) (2009) 5535-5540.

DOI: 10.1021/jp808032y

Google Scholar

[5] W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Applied Catalysis B: Environmental. 69 (2007) 138–144.

Google Scholar

[6] Y. Nosaka, M. Matsushita, J. Nishino, A.Y. Nosaka, Science and Technology of Advanced Materials. 6 (2005) 143–148.

Google Scholar

[7] W.Y. Choi, A. Termin, M.R. Hoffman, Journal of Physical Chemistry. 98 (1994) 13669-13679.

Google Scholar

[8] A. Agostiano, A. Albini, F. Bordin, J.P. Fouassier, M.P. Gordon, H. Lemmetyinen, U.E. Steiner T. Yagishita, Trends Photochem. Photobiol. 4 (1997) 79–86.

Google Scholar

[9] M.S. Wong, S.H. Hsu, K.K. Rao, C.P. Kumar, Journal of Molecular Catalysis A: Chemical. 279 (2008) 20–26.

Google Scholar

[10] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[11] A. Mills, S.L. Hunte, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35.

Google Scholar

[12] S.W. Kim, M. Kang, S.J. Choung, J. Ind. Eng. Chem. Volume 11, number 3 (2005) 416-424.

Google Scholar

[13] M. Bideau, B. Claudel, C. Dubien, L. Faure, H. Kazouan, J. Photochem. Photobiol. A 91(2) (1995) 137-144.

Google Scholar

[14] A.H.C. Chan, J.F. Porter, J.P. Barford, C.K. Chan, J. Materials Research. Vol 17 (7) (2002) 1758-1765.

Google Scholar

[15] K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res. 43 (2004) 7683-7696.

Google Scholar

[16] C. Herdes, M.M. Carrott, P.A. Russo, P.J. Carrott, Langmuir. 27 (24) (2011) 14940-14946.

DOI: 10.1021/la203370c

Google Scholar

[17] H. Zengin, B. Erkan, J. Hazard. Mater. 172 (2-3) (2009) 978-985.

Google Scholar

[18] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Ind. Eng. Chem. Res. 2011, 50, 7753–7762.

Google Scholar

[19] V. Lanfond, P.H. Mutin, A. Vioux, Chem. Mater. 16 (2004) 5380-5386.

Google Scholar

[20] Y. Guo, Y. Yang, X. Zhou, C. Lin, Y. Wang, W. Zhang, Jour. of Nano-materials. (2011) 1.

Google Scholar

[21] K.D.O. Jackson, The Internet Journal of Vibrational Spectroscopy. 2 (3) (1998) 4.

Google Scholar

[22] A. Sclafani, J.M. Herrmann, J. Phys. Chem. 100 (1996) 13655-13661.

Google Scholar

[23] V.P. Prakapenka, G. Shen, L.S. Dubrovinsky, M.L. Rivers, S.R. Sutton, Journal of Physics and Chemistry of Solids. 65 (2004) 1537-1545.

Google Scholar

[24] H.D. Jang, S.K. Kim, S.J. Kim, Journal of Nanoparticle Research. 3 (2001) 141-147.

Google Scholar

[25] C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Applied Catalysis B: Environmental. 64 (2006) 312-317.

Google Scholar

[26] Y. Huang, W. Ho, S. Lee, L. Zhang, G. Li, J.C. Yu, Langmuir. 24 (2008) 3510-3516.

Google Scholar

[27] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science. 293 (2001) 269.

Google Scholar

[28] T. Morikawa, R. Asahi, T. Ohwoki, K. Aoki, Y. Taka, J. Appl. Phys. 40 (2001) 561.

Google Scholar

[29] P. Calza, C. Minero, E. Pellizetti, Environ. Sci. Technol. 2198 (1997) 31.

Google Scholar

[30] A. Mills, J. Wang. J. Photochem. Photobiol. A: Chem. 53 (1998) 118.

Google Scholar

[31] A. Amlouk, L. El Mir, S. Kraiem, S. Alaya, Journal of Physics and Chemistry of Solids. 67 (2006) 1464–1468.

DOI: 10.1016/j.jpcs.2006.01.116

Google Scholar

[32] S.N. Hosseini, M. Borghei, M. Vossoughi, N. Taghavinia, 3rd IASME/WSEAS Int. Conf. on Energy & Environment, University of Cambridge, UK (2008).

Google Scholar

[33] J. Yuan, M. Chen, J. Shi, W. Shangguan, International Journal of Hydrogen Energy. 31 (2006) 1326 – 1331.

Google Scholar

[34] P. Nyamukamba, L. Tichagwa, C. Greyling, Material Science Forum. 712 (2012) 49-63.

Google Scholar