Recent Development on Titania Based Mixed Oxide Photocatalysts for Environmental Application under Visible Light

Article Preview

Abstract:

In the recent years most of the studies are confined to the mixing of ZrO2, SiO2, WO4 or ceria with titania in different composition so as to stabilize anatase phase, maintain high surface area and increase visible light absorption for better photocatalytic activity. Method of synthesis also helps in effective doping and enhancing surface area of the resultant materials. Nonmetal doping of oxide semiconductor materials facilitates the visible light application of photocatalysis. Based on the recent literature this review elaborately discuss on the development of titania based mixed oxide catalyst with or without different doping for visible light application. In addition this review deals with critical analysis of these materials towards photocatalytic oxidation of organics and reduction of pollutants like toxic metal ions and nitrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-214

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review, Ind. Eng. Chem. Res. 43 (2004) 7683-7696.

DOI: 10.1021/ie0498551

Google Scholar

[3] H. Zhang, J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem. 8 (1998) 2073-(2076).

DOI: 10.1039/a802619j

Google Scholar

[4] H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B 104 (2000) 3481-3487.

DOI: 10.1021/jp000499j

Google Scholar

[5] H. Hu, L. Li, G. Li, C. Tang, L. Sun, High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance, Cryst. Growth Des. 9 (2009) 3676-3682.

DOI: 10.1021/cg9004032

Google Scholar

[6] A.L. Linsebigler, G. Lu, J.J. Yates. Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[7] A. Beltran, L. Gracia, J. Andres, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs, J. Phys. Chem. B 110 (2006) 23417-23423.

DOI: 10.1021/jp0643000

Google Scholar

[8] K. Yanagisawa, J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature, J. Phys. Chem. B 103 (1999) 7781-7787.

DOI: 10.1021/jp990521c

Google Scholar

[9] T. Ohno, K. Sarukawa, M. Matsumura, Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution, J. Phys. Chem. B 105 (2001) 2417-2420.

DOI: 10.1021/jp003211z

Google Scholar

[10] M.C. Yan, F. Chen, J.L. Zhang, M. Anpo, Preparation of controllable crystalline titania and study on the photocatalytic properties, J. Phys. Chem. B 109 (2005) 8673-8678.

DOI: 10.1021/jp046087i

Google Scholar

[11] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Appl. Catal. A 244 (2003) 383-391.

Google Scholar

[12] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed. 47 (2008) 1766-1769.

DOI: 10.1002/anie.200704788

Google Scholar

[13] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 photocatalyst (degussa, P-25) consisting of anatase and rutile crystalline phases, J. Catal. 203 (2001) 82-86.

DOI: 10.1006/jcat.2001.3316

Google Scholar

[14] A.A. Gribb, J.F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral. 82 (1997) 717-728.

DOI: 10.2138/am-1997-7-809

Google Scholar

[15] X. Ye, J. Sha, Z. Jiao, Thermoanalytical charateristic of nanocrystalline brookite-based titanium dioxide, Nanostruct. Mater. 8 (1997) 919-927.

DOI: 10.1016/s0965-9773(98)00013-0

Google Scholar

[16] H. Kominani, M. Kohno, Y. Kera, Synthesis of brookite-type titanium oxide nano-crystals in organic media, J. Mater. Chem. 10 (2000) 1151-1156.

DOI: 10.1039/a908528i

Google Scholar

[17] A. Kubacka, M. Fernandez-García, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications, Chem Rev. 112 (2012) 1555-1614.

DOI: 10.1021/cr100454n

Google Scholar

[18] S. S. Srinivasan, J. Wade, E. K. Stefanakos, Visible light photocatalysis via CdS/TiO2 nanocomposite materials, J. Nanomater. (2006) 1-7.

Google Scholar

[19] C. Wang, R. L. Thompson, J. Baltrus, C. Matranga, Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts, J. Phys. Chem. Lett. 1 (2010) 48–53.

DOI: 10.1021/jz9000032

Google Scholar

[20] P.V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion, J. Phys. Chem. C 111 (2007) 2834-2860.

DOI: 10.1021/jp066952u

Google Scholar

[21] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112 (2008) 18737-18753.

DOI: 10.1021/jp806791s

Google Scholar

[22] D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today 122 (2007) 20-26.

DOI: 10.1016/j.cattod.2007.01.060

Google Scholar

[23] L. Wu, J.C. Yu, X.Z. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal. 244 (2006) 25-32.

DOI: 10.1016/j.molcata.2005.08.047

Google Scholar

[24] J. Piris, A.J. Ferguson, J.L. Blackbrun, A.G. Norman, G. Rumble, D.C. Salmatem, N. Kopidakis, Efficient photoinduced charge injection from chemical bath deposited CdS into mesoporous TiO2 probed with time-resolved microwave conductivity, J. Phys. Chem. C 112 (2008).

DOI: 10.1021/jp800527r

Google Scholar

[25] B-R. Hyun, Y-W. Zhong, A.C. Batnik, L. Sun, H.D. Abru~na, F.S. Wise, J D. Goodreau, J. R. Mattheus, T. M. Leslie, N. F. Borreli, Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles, ACS Nano 2 (2008) 2206-2212.

DOI: 10.1021/nn800336b

Google Scholar

[26] S. Furukawa, T. Shishido, K. Teramura, T. Tanaka, Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5, ACS Catal. 2 (2012) 175-179.

DOI: 10.1021/cs2005554

Google Scholar

[27] A. I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles, Chem. Mater. 21 (2009) 662–672.

DOI: 10.1021/cm802495p

Google Scholar

[28] J. Wang, Y. He, J. Tao, J. He, W. Zhang, S. Niu, Z. Yan, Enhanced photodegradation of dyes on titania-based photocatalysts by adding commercial GeO2 in aqueous suspension, Chem. Commun. 46 (2010) 5250–5252.

DOI: 10.1039/c002783a

Google Scholar

[29] S.K. Poznyak, D.V. Talapin, A.I. Kulak, Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2-In2O2 composite solids and films prepared by sol-gel method, J. Phys. Chem. B 105 (2001) 4816-4823.

DOI: 10.1021/jp003247r

Google Scholar

[30] D G. Shchukin, R.A. Caruso, Template synthesis and photocatalytic properties of metal oxide spheres formed by nanoparticle infiltration, Chem. Mater. 16 (2004) 2287-2292.

DOI: 10.1021/cm0497780

Google Scholar

[31] A. Kubacka, M. Fernández-García, G. Colón, Nanostructured Ti–M mixed-metal oxides: Toward a visible light-driven photocatalyst, J. Catal 254 (2008) 272–284.

DOI: 10.1016/j.jcat.2008.01.005

Google Scholar

[32] D.C.M. Dutoit, M. Schneider, A. Baiker, Titania-silica mixed oxides: I. Influence of sol-gel and drying conditions on structural properties, J. Catal. 153 (1995) 165-176.

DOI: 10.1006/jcat.1995.1118

Google Scholar

[33] D.C.M. Dutoit, U. Gobel, M. Schneider, A. Baiker, Titania–silica mixed Oxides: V. Effect of sol-gel and drying conditions on surface properties, J. Catal. 164 (1996) 433-439.

DOI: 10.1006/jcat.1996.0399

Google Scholar

[34] R.J. Davis, Z. Liu, Titania-silica: A model binary oxide catalyst system, Chem. Mater. 9 (1997) 2311-2324.

DOI: 10.1021/cm970314u

Google Scholar

[35] S. Vemury, S.E. Pratsinis, Dopants in flame synthesis of titania, J. Am. Ceram. Soc. 78 (1995) 2984-2992.

DOI: 10.1111/j.1151-2916.1995.tb09074.x

Google Scholar

[36] P. Cheng, M-P. Zheng, Q. Huang, Y-P. Jin, M-Y. Gu, Enhanced photoactivity of silica-titania binary oxides prepared by sol–gel method, J. Mater. Sci. Lett. 22 (2003) 1165-1168.

Google Scholar

[37] M. S. Marth, K. L. Walther, A. Wokaun, B. E. Handy, A. Baiker, Porous silica gels and TiO2/SiO2 mixed oxides prepared via the sol-gel process: Characterisation by spectroscopic techniques, J. Noncryst. Solids 143 (1992) 93-111.

DOI: 10.1016/s0022-3093(05)80557-5

Google Scholar

[38] M.F. Best, R.A. Condrate, A Raman study of TiO2–SiO2 glasses prepared by sol–gel processes, J. Mater. Lett. 4 (1985) 994-998.

DOI: 10.1007/bf00721102

Google Scholar

[39] C. Xie, Z. Xu, Q. Yang, B. Xue, Y. Du, J. Zhang, Enhanced photocatalytic activity of titania–silica mixed oxide prepared via basic hydrolyzation, Mater. Sci. Eng. B 112 (2004) 34-41.

DOI: 10.1016/j.mseb.2004.05.011

Google Scholar

[40] D. Zhao, T. Peng, M. Liu, L. Lu, P. Cai, Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure, Microporous Mesoporous Mater. 114 (2008) 166-174.

DOI: 10.1016/j.micromeso.2008.01.001

Google Scholar

[41] A. Mitra, A. Bhaumik, B.K. Paul, Mesoporous titanium oxide synthesized in the presence of a new surfactant assembly, Microporous Mesoporous Mater. 109 (2008) 66-72.

DOI: 10.1016/j.micromeso.2007.04.052

Google Scholar

[42] T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chem. B 109 (2005) 4947-4952.

DOI: 10.1021/jp044771r

Google Scholar

[43] H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O2 composite membranes for environmental applications, Appl. Catal. B 63 (2006) 60-67.

DOI: 10.1016/j.apcatb.2005.09.012

Google Scholar

[44] T. Mishra, J. Hait, Noor Aman, R.K. Jana, S. Chakravarty, Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials, J. Colloid Interface Sci. 316 (2007) 80-84.

DOI: 10.1016/j.jcis.2007.08.037

Google Scholar

[45] T. Mishra, J. Hait, Noor Aman, M. Gunjan, B. Mahahto, R.K. Jana, Surfactant mediated synthesis of spherical binary oxides photocatalysts with enhanced activity in visible light, J. Colloid Interface Sci. 327 (2008) 377-383.

DOI: 10.1016/j.jcis.2008.08.040

Google Scholar

[46] C. Anderson, A.J. Bard, Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O2 materials, J. Phys. Chem. B 101 (1997) 2611-2616.

Google Scholar

[47] Z. Ding, G. Q. Lu, P. F. Greenfield, Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water, J. Phys. Chem. B 104 (2000) 4815-4820.

DOI: 10.1021/jp993819b

Google Scholar

[48] K.V. Baiju, P. Periyat, P. Krishna Pillai, P. Mukundan, K.G.K. Warrier, W. Wunderlich, Enhanced photoactivity and anatase thermal stability of silica alumina mixed oxide additives on sol gel nanocrystalline titania, Mater. Lett. 61 (2007) 1751.

DOI: 10.1016/j.matlet.2006.07.124

Google Scholar

[49] P.K. Doolin, S. Alerasool, D.J. Zalewski, J.F. Hoffman, Acidity studies of titania-silica mixed oxides, Catal. Lett. 25 (1994) 209-223.

DOI: 10.1007/bf00816302

Google Scholar

[50] M. Itoh, H. Hattori, K. Tanabe, The acidic properties of TiO2-SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butane, J. Catal. 35 (1974) 225-231.

DOI: 10.1016/0021-9517(74)90201-2

Google Scholar

[51] C.U.I. Odenbrand, J.G.M. Brandin, G. Busca, Surface acidity of silica-titania mixed oxides, J. Catal. 135 (1992) 505-517.

DOI: 10.1002/chin.199236026

Google Scholar

[52] K.Y. Jung and B.S. Park, Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Appl. Catal. B 25 (2000) 249-256.

DOI: 10.1016/s0926-3373(99)00134-4

Google Scholar

[53] X. Fu, L. A. Clark, Q. Yang, M.A. Anderson, The enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2, TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647-653.

DOI: 10.1021/es950391v

Google Scholar

[54] C. Xie, Z. Xu, Q. Yang, N. Li, D. Zhao, D. Wang, Y. Du, Comparative studies of heterogeneous photocatalytic oxidation of heptane and toluene on pure titania, titania–silica mixed oxides and sulfated titania, J. Mol. Catal. A 217 (2004) 193-201.

DOI: 10.1016/j.molcata.2004.03.033

Google Scholar

[55] J. Liu, M. Li, J. Wang, Y. Song, L. Jiang, T. Murakami, A. Fujishima, Hierarchically macro-/mesoporous Ti−Si oxides photonic crystal with highly efficient photocatalytic capability, Environ. Sci. Technol. 43 (2009) 9425-9431.

DOI: 10.1021/es902462c

Google Scholar

[56] H.R. Jafry, M.V. Liga, Q. Li, A.R. Barron, Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition, Environ. Sci. Technol. 45 (2011) 1563-1568.

DOI: 10.1021/es102749e

Google Scholar

[57] J. Lukac, M. Klementova, P. Bezdicka, S. Bekardjieva, J. Subrt, L. Szatmary, A. Gruskova, Characterization of Zr-dped TiO2 prepared by homogeneous co-precepational without high temperature treatment, J. Mater. Sci. 42 (2007) 9421-9428.

Google Scholar

[58] J. Lukac, M. Klementova, P. Bezdicka, S. Bekardjieva, J. Subrt, L. Szatmary, Z. Bastl, J. Jirkowsky, Influence of Zr as TiO2 doing ion on photocatalytic degradation of 4-chlorophenol, Appl. Catal. B 74 (2007) 83-91.

Google Scholar

[59] A. Mattsson, C. Lejon, V. Stengl, S. Bakardjieva, F. Oplustil, P. O. Andersson, L. Osturlund, Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles, Appl. Catal. B 92 (2009) 401-410.

DOI: 10.1016/j.apcatb.2009.08.020

Google Scholar

[60] K. Tanabe, T. Yamaguchi, Acid-base bifunctional catalysis by ZrO2 and its mixed oxides, Catal. Today 20 (1994) 185-197.

DOI: 10.1016/0920-5861(94)80002-2

Google Scholar

[61] D. Mao, G. Lu, Q. Chen, Z. Xie, Y. Zhang, Catalytic performance of B2O2/TiO2-ZrO2 for vapour-phase backmann rearrangement of clclohexanone oxime: The effect of boria loading, Catal. Lett. 77 (2001) 119-124.

Google Scholar

[62] D. Mao, Q. Chen, G. Lu, Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O2/TiO2-ZrO2, Appl. Catal. A 244 (2003) 273-282.

DOI: 10.1016/s0926-860x(02)00599-9

Google Scholar

[63] B. Gao, T. M. Lim, D. P. Subagio, T. T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A, Appl. Catal. A 375 (2010) 107-115.

DOI: 10.1016/j.apcata.2009.12.025

Google Scholar

[64] Y.M. Wang, S.W. Liu, M.K. Lu, S.F. Wang, F. Gu, X.Z. Gai, X.P. Cui, J. Pan, Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals, J. Mol. Catal. A 215 (2004) 137-142.

DOI: 10.1016/j.molcata.2004.01.007

Google Scholar

[65] M.D.H. Alonso, I.T. Tejedor, J.M. Coronado, J. Soria, M.A. Anderson, Sol-gel preparation of TiO2-ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity, Thin Solid Films 502 (2006) 125-131.

DOI: 10.1016/j.tsf.2005.07.256

Google Scholar

[66] M.E. Manriquez, T. Lopez, R. Gomez, J. Navarrete, Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties, J. Mol. Catal. A 220 (2004) 229-237.

DOI: 10.1016/j.molcata.2004.06.003

Google Scholar

[67] M.E. Zorn, D.T. Tompkins, W.A. Zeltner, M.A. Anderson, Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films, Appl. Catal. B 23 (1999) 1-8.

DOI: 10.1016/s0926-3373(99)00067-3

Google Scholar

[68] J.G. Weissman, E.I. Ko, S. Katyal, Titania-zirconia mixed oxide aerogels as supports for hydrotreating catalysts, Appl. Catal. A 94 (1993) 45-59.

DOI: 10.1016/0926-860x(93)80044-q

Google Scholar

[69] S.M. Chang, R.A. Doong, Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol−gel method at high temperatures, J. Phys. Chem. B 110 (2006) 20808-20814.

DOI: 10.1021/jp0626566

Google Scholar

[70] J.C. Yu, J. Lin, R.W. M. Kwok, Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air, J. Phys. Chem. B 102 (1998) 5094-5098.

Google Scholar

[71] R.F.D. Farias, U. Arnold, L. Martinez, U. Schuchardt, M.J.D.M. J.C. Airoldi, Synthesis, characterization and catalytic properties of sol-gel derived mixed oxides, J. Phys. Chem. Solids 64 (2003) 2385-2389.

DOI: 10.1016/s0022-3697(03)00276-2

Google Scholar

[72] R.F.D. Farias, C.J. Airoldi, Spherical particles of zirconia–titania of hexagonal structure from a neutral amine route, J. Colloid Interface Sci. 220 (1999) 255-259.

DOI: 10.1006/jcis.1999.6504

Google Scholar

[73] M.D. H-Alonso, J.M. Coronado, B. B-Baeza, M. F-Garcia, J. Soria, Influence of structural and surface characteristics of Ti1-xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase, Chem. Mater. 19 (2007).

DOI: 10.1021/cm070212w.s001

Google Scholar

[74] J.R. Bartlett, D. Gazeau, Th. Zemb, J.L. Woolfrey, Structure of multicomponent (titania/zirconia) colloids, Langmuir 14 (1998) 3538-3544.

DOI: 10.1021/la970282p

Google Scholar

[75] B. Wu, R. Yuan, X. Fu, Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers, J. Solid State Chem. 182 (2009) 560-565.

DOI: 10.1016/j.jssc.2008.11.030

Google Scholar

[76] X. Wang, J.C. Yu, Y. Chen, L. Wu, X. Fu, ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts, Environ. Sci. Technol. 40 (2006) 2369-2374.

DOI: 10.1021/es052000a.s001

Google Scholar

[77] G. Tian, K. Pan, H. Fu, L. Jing, W. Zhou, Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation, J. Hazard. Mater. 166 (2009) 939-944.

DOI: 10.1016/j.jhazmat.2008.11.090

Google Scholar

[78] S. Liu, J. Yu, S. Mann, Synergetic codoping in fluorinated Ti1−xZrxO2 hollow microspheres, J. Phys. Chem. C 113 (2009) 10712-10717.

DOI: 10.1021/jp902449b

Google Scholar

[79] T.P. Ang, C.S. Toh, Y-F. Han, Synthesis, Characterization, and activity of visible-light-driven nitrogen-doped TiO2−SiO2 mixed oxide photocatalysts, J. Phys. Chem. C 113 (2009) 10560-10566.

DOI: 10.1021/jp9000658

Google Scholar

[80] N. Aman, T. Mishra, R.K. Sahu, J.P. Tiwari, Facile synthesis of thermally stable, mesoporous N doped titanium zirconium oxide nanomaterial with enhanced photocatalytic activity under visible light, J. Mater. Chem. 20 (2010) 10876-10882.

DOI: 10.1039/c0jm01342k

Google Scholar

[81] N. Aman, Synthesis, characterisation and photocatalytic evaluation of modified titania based binary oxide materials, Ph. D thesis, (2012).

Google Scholar

[82] M. Boulora, G. Lucazeau, Crystallite nanosize effect on the structural transitions of WO3 studied by raman spectroscopy, J. Solid State Chem. 167 (2000) 425-434.

DOI: 10.1006/jssc.2002.9649

Google Scholar

[83] F. Corà, M.G. Stachiotti, C.R.A. Catlow, Transition metal oxide chemistry: Electronic structure study of WO3, ReO3, and NaWO3, J. Phys. Chem. B, 101(1997) 3945–3952.

DOI: 10.1002/chin.199731003

Google Scholar

[84] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, Great Enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide, J. Phys. Chem. B 110 (2006) 14391-14397.

DOI: 10.1021/jp0624606

Google Scholar

[85] T. Mishra, M. Mahato, N. Aman, J.N. Patel, R.K. Sahu, Mesoporous WN co-doped titania nanomaterial with enhanced photocatalytic aqueous nitrate removal activity under visible light, Catal. Sci. Technol. 1 (2011) 609-615.

DOI: 10.1039/c1cy00042j

Google Scholar

[86] V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, J. Catal 215 (2003) 129-138.

DOI: 10.1016/s0021-9517(03)00002-2

Google Scholar

[87] Y-C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2-WO3 composite nanotubes by alloy anodization: Growth and enhanced electrochromic properties, J. Am. Chem. Soc. 130(2008) 16154–16155.

DOI: 10.1021/ja807106y

Google Scholar

[88] K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, Lanthanide oxide doped titanium dioxide photocatalysts: Effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid, J. Catal. 204 (2001) 305-313.

DOI: 10.1006/jcat.2001.3388

Google Scholar

[89] C. Wang, P. Zhong, Y. Jiang, G. Zhang, Influence of doped cerium on degradation efficiency of oleic acid photocatalyzed by TiO2 film coated on silica glass surface, Chin. J. Catal. 21 (2000) 443–445.

Google Scholar

[90] C.P. Sibu, R.S. Kumar, P. Mukundan, K.G.K. Warrier, Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide, Chem. Mater. 14 (2002) 2876–2881.

DOI: 10.1021/cm010966p

Google Scholar

[91] G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Ind. J. Chem. 48A (2009) 480-488.

Google Scholar

[92] Y.S. Chaudhary, S. Panigrahi, S. Nayak, B. Satpati, S. Bhattacharjee and N. Kulkarni, J. Facile synthesis of monodisperse ultra-small ceria nanocrystals at room temperature and their catalytic activity under visible light, J. Mater Chem 20 (2010).

DOI: 10.1039/b922914k

Google Scholar

[93] F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, W.C.H. Choy, Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control, Appl. Catal. A: Gen. 285 (2005) 181-189.

DOI: 10.1016/j.apcata.2005.02.025

Google Scholar

[94] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, J. Colloids Interf. Sci. 315 (2007).

DOI: 10.1016/j.jcis.2007.06.051

Google Scholar

[95] J. Xiao, T. Peng, R. Li, Z. Peng, C. Yan, Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles, J. Solid State Chem. 179 (2006) 1161-1170.

DOI: 10.1016/j.jssc.2006.01.008

Google Scholar

[96] Y. Xie, C. Yuan, Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation, Appl. Catal. B: Environ. 46 (2003) 251-259.

DOI: 10.1016/s0926-3373(03)00211-x

Google Scholar

[97] Y. Xu, H. Chen, Z. -X. Zeng, B. Lei, Investigation on mechanism of photocatalysis activity enhancement of nanometer cerium-doped titania, Appl. Surf. Sci. 252 (2006) 8565-8570.

DOI: 10.1016/j.apsusc.2005.11.072

Google Scholar

[98] G. Li, C. Liu, Y. Liu, Different effects of cerium ion doping on properties of anatase and rutile TiO2, Appl. Surf. Sci. 253 (2006) 2481-2486.

DOI: 10.1016/j.apsusc.2006.05.002

Google Scholar

[99] T-Y. Ma, J-L Cao, G-S Shao, X-J Zhang, Z-Y Yuan, Hierarchically structured squama-like cerium-doped titania: synthesis, photoactivity and catalytic CO oxidation, J. Phys. Chem. C 113 (2009)16658-16667.

DOI: 10.1021/jp906187g

Google Scholar

[100] A.K. Sinha, K. Suzuki, Preparation and characterization of novel mesoporous ceria-titania, J. Phys. Chem. B, 109(2005) 1708–1714.

DOI: 10.1021/jp046391b

Google Scholar

[101] N. Aman, P.K. Satapathy, T. Mishra, M. Mahato, N.N. Das, Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst, Mater. Res. Bull. 47 (2012) 179-183.

DOI: 10.1016/j.materresbull.2011.11.049

Google Scholar

[102] P. Periyat, K.V. Baiju, P. Mukundan, P. Krishna Pillai, K.G.K. Warrier, Aqueous colloidal sol-gel route to synthesize nanosized ceria-doped titania having high surface area and increased anarase phase stability, J. Sol-Gel Sci. Technol. 43 (2007).

DOI: 10.1007/s10971-007-1583-1

Google Scholar

[103] Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting materials, Am. Mineral. 85 (2000) 543-556.

DOI: 10.2138/am-2000-0416

Google Scholar

[104] M. Yin, C. K. Wu, Y.B. Lon, C. Burda, J.T. Koberstein, Y.M. Zhu, S.O. Brien, Copper oxide nanocrystals, J. Am. Chem. Soc. 127 (2005) 9506-9511.

DOI: 10.1021/ja050006u

Google Scholar

[105] K. Borgohain, N. Morase, S. Mahumani, Synthesis and properties of Cu2O quantum particles, J. Appl. Phys. 92 (2002) 1292-1298.

Google Scholar

[106] A. Filippetti, V. Fiorentini, Coexistence of ionic and metallic bonding in noble-metal oxides, Phys. Rev. B 72 (2005) 1-8.

DOI: 10.1103/physrevb.72.035128

Google Scholar

[107] M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique, J. Appl. Phys. D 42 (2009) 015413.

DOI: 10.1088/0022-3727/42/1/015413

Google Scholar

[108] M.K.I. Senevirathna, P.K.D.D.P. Pitigada, K. Tennekona, Water photoreduction with Cu2O quantum dots on TiO2 nano-particles, J. Photochem. Photobiol. A 2005, 171, 257-259.

DOI: 10.1016/j.jphotochem.2004.10.018

Google Scholar

[109] G. Li, N.M. Dimitrijevic, T. Rajh, K.M. Gray, Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO−TiO2 nanocomposites, J. Phys. Chem. C 2008, 112, 19040-19044.

DOI: 10.1021/jp8068392

Google Scholar

[110] C. Way, L. Yin, L. Zhang, L. Kang, X. Wang, R. Gao, Magnetic (γ-Fe2O3@SiO2)n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability, J. Phys. Chem. C 113 (2009) 4008-4011.

DOI: 10.1021/jp809835a

Google Scholar

[111] J.A. Libera, J.W. Elen, N.I. Saiter, T. Rajh, N.D. Dimitrijevic, Iron(III)-oxo centers on TiO2 for visible-light photocatalysis, Chem. Mater. 22 (2010) 409-413.

DOI: 10.1021/cm902825c

Google Scholar

[112] H. Tada, Q. Jin, H. Nihijima, H. Yamamoto, M. Fujishima, S.L. Okuoka, T. Hattori, Y. Sumida, H. Kobayashi, Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst, Angew. Chem., Int. Ed. 50 (2011) 3501-3505.

DOI: 10.1002/anie.201007869

Google Scholar

[113] A. Hameed, T. Montini, V. Gamboa, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite, J. Am. Chem. Soc. 130 (2008) 9658-9659.

DOI: 10.1021/ja803603y

Google Scholar

[114] Z. Ban, J. Zhu, S. Wang, Y. Cao, X. Quian, H. Li, Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase, J. Phys. Chem. C 112 (2008) 6258-6262.

DOI: 10.1021/jp800324t

Google Scholar

[115] H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun, X. Fu, Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation, Environ. Sci. Technol. 43 (2009) 4164-4168.

DOI: 10.1021/es900393h

Google Scholar

[116] X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C 113 (2009) 7371-7378.

DOI: 10.1021/jp900812d

Google Scholar

[117] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503-6570.

DOI: 10.1021/cr1001645

Google Scholar

[118] A.J. Esswein, D.G. Nocera, Hydrogen production by molecular photocatalysis, Chem. Rev. 107 (2007) 4022-4047.

DOI: 10.1021/cr050193e

Google Scholar

[119] K. Maeda, K. Domen, Photocatalytic water splitting: Recent progress and future challenges, Phys. Chem. Lett. 1(2010) 2655-2661.

DOI: 10.1021/jz1007966

Google Scholar

[120] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Behnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[121] Z. Zainal, L.K. Hui, M.Z. Hussein, Y.H. Taufiq-Yap, A.H. Abdullah, I. Ramli, Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps, J. Hazard. Mater. 125 (2005) 113-120.

DOI: 10.1016/j.jhazmat.2005.05.013

Google Scholar

[122] M. Qamar, M. Saquib, M. Muneer, Semiconductor-mediated photocatalytic degradation of anazo dye, chrysoidine Y in aqueous suspensions, Desalination 171 (2005) 185-193.

DOI: 10.1016/j.desal.2004.04.005

Google Scholar

[123] E.J. Weber, R.L. Adams, Chemical- and sediment-mediated reduction of the azo dye disperse blue 79, Environ. Sci. Technol. 29 (1995) 1163-1170.

DOI: 10.1021/es00005a005

Google Scholar

[124] T. Wu, G. Lin, J. Zhao, H. Hidika, N. Serpone, Evidence for H2O2 Generation during the TiO2-assisted photodegradation of dyes in aqueous dispersions under visible light illumination, J. Phys. Chem. B 103 (1999) 4862-4867.

DOI: 10.1021/jp9846678

Google Scholar

[125] L. Lucarelli, V. Nadtochento, J. Kiwi, Environmental photochemistry:  Quantitative adsorption and FTIR studies during the TiO2-photocatalyzed degradation of orange II, Langmuir 16 (2000) 1102-1108.

DOI: 10.1021/la990272j

Google Scholar

[126] K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal. B 48 (2004) 83-93.

DOI: 10.1016/j.apcatb.2003.09.013

Google Scholar

[127] J.C.S. Wu, C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol–gel method, J. Photochem. Photobiol. A 163 (2004) 509-515.

DOI: 10.1016/j.jphotochem.2004.02.007

Google Scholar

[128] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Tago, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[129] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C 6 (2005) 186-205.

Google Scholar

[130] X. Fu, L. A. Clark, Q. Yang, M. A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647-653.

DOI: 10.1021/es950391v

Google Scholar

[131] J. Gezechulska, M. Hamerski, A.W. Morawski, Photocatalytic decomposition of oil in water photocatalytic decomposition of oil in water, Water Res. 34 (2000) 1638-1644.

DOI: 10.1016/s0043-1354(99)00275-4

Google Scholar

[132] R. Doong, C.H. Chen, R.A. Maithreepala, S. Chang, The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspension, Water Res. 35 (2001) 2873-2880.

DOI: 10.1016/s0043-1354(00)00580-7

Google Scholar

[133] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.

DOI: 10.1021/jp030133h

Google Scholar

[134] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed. 42 (2003) 4908-4911.

DOI: 10.1002/anie.200351577

Google Scholar

[135] V. Brezowa, A. Blazkowa, L. Karpinsky, J. Groskova, B. Havlinova, V. Jorik, M. Ceppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres, J. Photchem. Photobiol. A 109 (1997) 177-183.

DOI: 10.1016/s1010-6030(97)00121-4

Google Scholar

[136] K.V.S. Rao, B. Lavedrine, P. Boule, Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates, J. Photochem. Photobiol. A 154 (2003) 189-193.

DOI: 10.1016/s1010-6030(02)00299-x

Google Scholar

[137] B. Dindar, S. Icli, Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight, J. Photochem. Photobiol. A 140 (2001) 263-268.

DOI: 10.1016/s1010-6030(01)00414-2

Google Scholar

[138] S.G. Schrank, H.J. Jose, R.F.P.M. Moreira, Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor, J. Photochem. Photobiol. A 147 (2002) 71-76.

DOI: 10.1016/s1010-6030(01)00626-8

Google Scholar

[139] M.R. Prairie, L.R. Evans, B. . Stange, S.L. Martinez, An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals, Environ. Sci. Technol. 27 (1993) 1776-1782.

DOI: 10.1021/es00046a003

Google Scholar

[140] M.R. Prairie, B.M. Stange, L.R. Evans, TiO2 photocatalysis for the destruction of organic and the reduction of heavy metals, in D.F. Ollis, H. Al-Ekabi, (Eds. ), Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam, 1993, pp.353-363.

Google Scholar

[141] P.H. Masscheleyn, R.D. Delaune, H.P. Patric Jr., Transformations of selenium as affected by sediment oxidation-reduction potential and pH, Environ. Sci. Technol. 24 (1990) 91-96.

DOI: 10.1021/es00071a010

Google Scholar

[142] S. Sanuki, T. Kojima, K. Arai, S. Nagaoka, H. Majima, Photocatalytic reduction of selenate and selenite solutions using TiO2 powders, Metall. Mater. Trans. B. 30 (1999) 15-20.

DOI: 10.1007/s11663-999-0002-0

Google Scholar

[143] S. Sanuki, K. Shako, S. Nagaoka, H. Majima, Photocatalytic reduction of Se ions using suspended anatase powders, Mater. Trans. 41 (2000) 799-805.

DOI: 10.2320/matertrans1989.41.799

Google Scholar

[144] T.T.Y. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions, J. Photochem. Photobiol. A 159 (2003) 273-280.

DOI: 10.1016/s1010-6030(03)00171-0

Google Scholar

[145] T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions, Chem. Eng. J. 95 (2003) 179-186.

DOI: 10.1016/s1385-8947(03)00103-7

Google Scholar

[146] V.N.H. Nguyen, R. Amal, D. Beydoun, Photocatalytic reduction of selenium ions using different TiO2 photocatalysts, Chem. Eng. Sci. 60 (2005) 5759-5769.

DOI: 10.1016/j.ces.2005.04.085

Google Scholar

[147] S. Yamazaki, S. Iwai, J. Yano, H. Taniguchi, Kinetic studies of reductive deposition of copper(II) ions photoassisted by titanium dioxide, J. Phys. Chem. A 105 (2001) 11285-11290.

DOI: 10.1021/jp012664g

Google Scholar

[148] N.S. Foster, A.N. Lancaster, R.D. Noble, C.A. Kovel, Effect of organics on the photodeposition of copper in titanium dioxide aqueous suspensions, Ind. Eng. Chem. Res. 34 (1995) 3865-3871.

DOI: 10.1021/ie00038a025

Google Scholar

[149] S. Zou, C. How, J.P. Chen, Photocatalytic treatment of wastewater contaminated with organic waste and copper ions from the semiconductor industry, Ind. Eng. Chem. Res. 46 (2007) 6566-6571.

DOI: 10.1021/ie070478c

Google Scholar

[150] M.A. Brakat, Y.T. Chen, C.P. Huang, Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst, Appl. Catal. B 53 (2004) 13-20.

DOI: 10.1016/j.apcatb.2004.05.003

Google Scholar

[151] E. Park, J. Jung, H. Chung, Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu(II)/Fe(III)–EDTA system by TiO2 photocatalysis, Chemosphere 64 (2006) 432-436.

DOI: 10.1016/j.chemosphere.2005.11.017

Google Scholar

[152] S. Goeringer, C.R. Chenthamarakshan, K. Rajeshwar, Synergistic Photocatalysis mediated by TiO2: Mutual rate enhancement in the photoreduction of Cr(VI) and Cu(II) in aqueous media , Electrochem. Commun. 3 (2001) 290-292.

DOI: 10.1016/s1388-2481(01)00155-2

Google Scholar

[153] L.X. Chen, T. Rajh, Z. Wang, M.C. Thurnauer, EXAFS studies of surface structures of TiO2 nano-particles and surface photocatalytic reduction of metal ions, J. Phys. Chem. B. 101 (1997) 10688-10697.

DOI: 10.1021/jp971930g

Google Scholar

[154] N. Aman, T. Mishra, J. Hait, R.K. Jana, Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst, J. Hazard. Mater. 186 (2011) 360-366.

DOI: 10.1016/j.jhazmat.2010.11.001

Google Scholar

[155] K. Tanaka, K. Harada, S. Murata, Photocatalytic deposition of metal ions onto TiO2 powder, Solar Energy 36 (1986) 159-161.

DOI: 10.1016/0038-092x(86)90121-0

Google Scholar

[156] C. Maillard-Dupuy, C. Guillard, P. Pichat, The degradation of nitrobenzene in water by TiO2: kinetics and products; simutaneous elimination of benzamide or phenol or Pb2+ cations, New J. Chem. 18 (1994) 941-948.

Google Scholar

[157] L. Murruni, G. Leyva, M.I. Litter, Photocatalytic removal of Pb(II) over TiO2 and Pt-TiO2 powders, Catal. Today 129 (2007) 127-135.

DOI: 10.1016/j.cattod.2007.06.058

Google Scholar

[158] O.V. Makarova, T. Rajh, M.C. Thurnauer, Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene, Environ. Sci. Technol. 34 (2000) 4797-4803.

DOI: 10.1021/es001109+

Google Scholar

[159] T. Rajh, A.E. Ostafin, O.I. Micic, D.M. Tiede, M.C. Thernauer, Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: an EPR study, J. Phys. Chem. 100 (1996) 4538-4545.

DOI: 10.1021/jp952002p

Google Scholar

[160] C.R. Chenthamarakshan, K. Rajeshwar, Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: an interfacial induced adsorption-reduction pathway mediated by formate ions, Electrochem. Commun. 2 (2000) 527-530.

DOI: 10.1016/s1388-2481(00)00078-3

Google Scholar

[161] V.N.H. Nguyen, R. Amal, D. Beydoun, Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst, Chem. Eng. Sci. 58 (2003) 4429-4439.

DOI: 10.1016/s0009-2509(03)00336-1

Google Scholar

[162] I.A. Ruvarac-Bugarcic, Z.V. Saponjic, S. Zec, T. Rajh, J.M. Nedeljkovik, Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids, Chem. Phys. Lett. 407 (2005) 110-113.

DOI: 10.1016/j.cplett.2005.03.058

Google Scholar

[163] L.R. Skubal, N.K. Meshkov, T. Rajh, M. Thurnauer, Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles, J. Photochem. Photobiol. A 148 (2002) 393-397.

DOI: 10.1016/s1010-6030(02)00069-2

Google Scholar

[164] L.D. Lau, R. Rodriguez, S. Henery, D. Manuel, Photoreduction of mercuric salt solutions at high pH, Environ. Sci. Technol. 32 (1998) 670-675.

DOI: 10.1021/es9704242

Google Scholar

[165] J.S. Curran, J. Domenech, N. Jaffrezic-Renault, R. Philippe, Kinetics and mechanism of platinum deposition by photoelectrolysis in illuminated suspensions of semiconducting titanium dioxide, J. Phys. Chem. 89 (1985) 957-963.

DOI: 10.1021/j100252a014

Google Scholar

[166] F-S. Zhang, J.O. Nriagu, H. Itoh, Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon, J. Photochem. Photobiol. A 167 (2004) 223–228.

DOI: 10.1016/j.jphotochem.2004.06.001

Google Scholar

[167] X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts, Electrochim. Acta 49 (2004) 1435-1444.

DOI: 10.1016/s0013-4686(03)00907-1

Google Scholar

[168] D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis, Chem. Eng. Sci. 56 (2001) 1561-1570.

DOI: 10.1016/s0009-2509(00)00383-3

Google Scholar

[169] L.R. Skubal, N.K. Meshkov, Reduction and removal of mercury from water using arginine-modified TiO2, J. Photochem. Photobiol. A 148 (2002) 211-214.

DOI: 10.1016/s1010-6030(02)00045-x

Google Scholar

[170] L.X. Chen, T. Rajh, O. Micic, Z. Wang, D.M. Tiede, M. Thurnauer, Photocatalytic reduction of heavy metal ions on derivatized titanium dioxide nano-particle surface studied by XAFS, Nucl. Instr. Methods in Phys. Res. B 133 (1997) 8-14.

DOI: 10.1016/s0168-583x(97)00546-6

Google Scholar

[171] J. Munoz, X. Domenech, TiO2 catalysed reduction of Cr(VI) in aqueous solutions under ultraviolet illumination, .J. Appl. Electrochem. 20 (1990) 518-521.

DOI: 10.1007/bf01076066

Google Scholar

[172] W. Lin, C. Wei, K. Rajeshwar, Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media, J. Electrochem. Soc. 140 (1993) 2477-2482.

DOI: 10.1149/1.2220847

Google Scholar

[173] Y. Ku, I. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res. 35 (2001) 135-142.

DOI: 10.1016/s0043-1354(00)00098-1

Google Scholar

[174] J.A. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa, J. Padron, D. Rodriguez, M.I. Litter, Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method, Appl. Catal. B 16 (1998).

DOI: 10.1016/s0926-3373(97)00073-8

Google Scholar

[175] J.A. Navio, J.J. Testa, P. Djedjeian, J.R. Padron, D. Rodriguez, M.I. Litter, Iron-doped titania powders prepared by a sol–gel method.: Part II: Photocatalytic properties, Appl. Catal. A 178 (1999) 191-203.

DOI: 10.1016/s0926-860x(98)00286-5

Google Scholar

[176] H. Yang, W.Y. Lin, K. Rajeshwar, Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media, J. Photochem. Photobiol. A 123 (1999) 137-143.

DOI: 10.1016/s1010-6030(99)00052-0

Google Scholar

[177] F-S. Zhang, I. Itoh, Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent, Chemosphere 65(2006) 125-131.

DOI: 10.1016/j.chemosphere.2006.02.027

Google Scholar

[178] E. Borgarello, R. Harris, N. Serpone, Photochemical deposition and photorecovery of gold using semiconductor dispersions: a practical application of photocatalysis, Nouv. J. Chim. 9 (1985) 743-747.

Google Scholar

[179] J. Li, H.C. Zeng, Size Tuning, functionalization, and reactivation of Au in TiO2 nanoreactors, Angew. Chem. Int. Ed. 44 (2005) 4342-4345.

DOI: 10.1002/anie.200500394

Google Scholar

[180] T. Soejima, H. Tada, T. Kawahara, S. Ito, Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction, Langmuir 18 (2002) 4191-4194.

DOI: 10.1021/la020099i

Google Scholar

[181] M.D. Ward, A.J. Bard, Photocurrent enhancement via trapping of photogenerated electrons of TiO2 particles, J. Phys. Chem. 86 (1982) 3599-3605.

DOI: 10.1021/j100215a021

Google Scholar

[182] W.W. Dunn, A.J. Bard, The characterization and behavior of catalysts prepared by heterogeneous photodeposition techniques, Nouv. J. Chim. 5 (1981) 651-655.

Google Scholar

[183] B. Kraeutler, A.J. Bard, Heterogeneous photocatalytic preparation of supported catalysts: Photodeposition of platinum on TiO2 powder and other substrates, J. Am. Chem. Soc. 100 (1978) 4317-4318.

DOI: 10.1021/ja00481a059

Google Scholar

[184] K.T. Ranjit, B. Viswanathan, Photocatalytic reduction of nitrite and nitrate ions to ammonia over M/TiO2 catalysts, J. Photchem. Photobiol. A 108 (1997) 73-78.

DOI: 10.1016/s1010-6030(96)04505-4

Google Scholar

[185] B. Bems, F.C. Jentoft, R. Schlogl, Photoinduced decomposition of nitrate in the presence of titania and humic acids, Appl. Catal. B 20 (1999) 155-163.

DOI: 10.1016/s0926-3373(98)00105-2

Google Scholar

[186] H. Kominami, T. Nakaseko, Y. Shimada, A. Furusho, H. Inoue, S.Y. Murakami, Y. Kera, B. Ohtani, Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium (IV) oxide particles, Chem. Commun. (2005).

DOI: 10.1039/b502909k

Google Scholar

[187] F. Zhang, R. Jin, J. Chen, C. Shao, W. Gao, L. Li, N. Guan, High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters, J Catal. 232 (2005) 424-431.

DOI: 10.1016/j.jcat.2005.04.014

Google Scholar

[188] J. Sa, C. A. Aguera, S. Gross, J. A. Anderson, Photocatalytic nitrate reduction over metal modified TiO2, Appl. Catal. B 85 (2009) 192-200.

Google Scholar

[189] N. Wehbe, M. Jaafar, C. Guillard, J-M. Herrmann, S. Miachon, E. Puzenat, N. Guilhaume, Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water, Appl. Catal. A 368 (2009) 1-8.

DOI: 10.1016/j.apcata.2009.07.038

Google Scholar

[190] X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang, C.N. Cao, Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light, Chemosphere 68 (2007) 1976-(1984).

DOI: 10.1016/j.chemosphere.2007.02.010

Google Scholar