[1]
J.O. Grimalt, J. Sunyer, V. Moreno, O.C. Amaral, M. Sala, A. Rosell, J.M. Anto, J. Albaiges, Risk excess of soft-tissue sarcoma and thyroidcancer in a community exposed to airborne organochlorinated compound mixtures with a high hexa-chlorobenzenecontent. Int J Cancer 56 (1994).
DOI: 10.1002/ijc.2910560209
Google Scholar
[2]
O.C. Amaral, R. Otero, J.O. Grimalt, Volatile and semi-volatile organochlorine compounds in tap and river waters in the area of influence of a chlorinated organic solvent factory, Water Res. 30 (1996) 1876–1884.
DOI: 10.1016/0043-1354(96)00065-6
Google Scholar
[3]
S. Heidrich, M. Schirmer, H. Weiss, P. Wycisk, J. Grossmann, and A. Kaschl, Regionally contaminated aquifers – toxicological relevance and remediation options (Bitterfeld case study), Toxicology. 205(2004) 143–155.
DOI: 10.1016/j.tox.2004.06.055
Google Scholar
[4]
I. Marti, R. Lloret, J. Martın-Alonso, F. Ventura, Determination of chlorinated toluenes in raw and treated water samples from the Llobregat river by closed loop stripping analysis and gas chromatography-mass spectrometry detection, Journal of Chromatography A. 1077(2005).
DOI: 10.1016/j.chroma.2005.04.051
Google Scholar
[5]
T. Huybrechts, J. Dewulf, H. Van Langenhove, Priority volatile organic compounds in surface waters of the southern North Sea, Environmental pollution (Barking, Essex: 1987). 133 (1987) 255-64.
DOI: 10.1016/j.envpol.2004.05.039
Google Scholar
[6]
M. Pirbazari, B.N. Badriyha, R.J. Miltner, GAC Adsorber Design for Removal of Chlorinated Pesticides, ASCE Journal Environmental Engineering. 117 (1991) 80-100.
DOI: 10.1061/(asce)0733-9372(1991)117:1(80)
Google Scholar
[7]
B.N. Badriyha , V. Ravindran, W. Den, M. Pirbazari, Bioadsorber efficiency, design, and performance forecasting for alachlor removal, Water Res. 37 (2003), 4051–4072.
DOI: 10.1016/s0043-1354(03)00266-5
Google Scholar
[8]
P.R. Gogate, A.B. Pandit , A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research. 8 (2004) 553-597.
DOI: 10.1016/s1093-0191(03)00031-5
Google Scholar
[9]
R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation process (AOP) for water purification and recovery, Catal. Today 53(1999) 51-59.
DOI: 10.1016/s0920-5861(99)00102-9
Google Scholar
[10]
R.W. Mattews, Purification of water with near—UV illuminated suspensions of titanium dioxide, Water Res. 24 (1990) 653-660.
DOI: 10.1016/0043-1354(90)90199-g
Google Scholar
[11]
R.W. Mattews, An adsorption water purifier with in situ photocatalytic regeneration, J. Catal. 113 (1988) 549-555.
Google Scholar
[12]
M. Gratzel, N. Serpone, E. Pelizzetti (Eds. ), Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, p.123.
Google Scholar
[13]
Al-Ekabi H., A N Sperpone., E. Pelizzetti, C. Minero, M. A. Fox, R.B. Draper, TiO2-Mediated Degradation of 4-Chlorophenol alone and in a three- component mixture of 4-Chlorophenol, 2, 4-Dichlorophenol, and 2, 4, 5-Trichlorophenol in air-equilibrated aqueous media. Langmuir, 5 (1989).
DOI: 10.1021/la00085a048
Google Scholar
[14]
C. S. Turchi and D. F. Ollis, Mixed reactant photocatalysis: Intermediates and mutual rate inhibition, J. Catal. 119 (1989) 483-496.
DOI: 10.1016/0021-9517(89)90176-0
Google Scholar
[15]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Application of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[16]
P. Calza, C. Minero, E. Pelizzetti, Photocatalytic assisted hydrolysis of chlorinated methane in the presence of electron and hole scavangers, Environ. Sci. Technol. 31(1997)2198–2203.
DOI: 10.1021/es960660x
Google Scholar
[17]
B. Morris Henry, Method of depositing titanium dioxide as a gate dielectric for MIS device fabrication, U.S. Patent 4 200474(29) (1980).
Google Scholar
[18]
M. R. Kozlowski, P. S. Tyler, W. H. Smyrl, R. T. Atanasoki, Anodic TiO2 thin films, J. Electrochem. Soc. 136 (1989)442-450.
DOI: 10.1149/1.2096652
Google Scholar
[19]
A. Mills, J. Wang, Photomineralisation of 4-chlorophenol by TiO2, thin films, J. Photochem. Photobiol. A: Chem. 118 (1998) 53–63.
Google Scholar
[20]
A. Yasumori, K. Ishizu, S. Hayashi, K. Okada, preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Chem. 8 (1998) 2521 – 2524.
DOI: 10.1039/a803265c
Google Scholar
[21]
X. Li, J.W. Cubbage, T.A. Tatzlaff, W.S. Jenks, Photocatalytic degradation of 4-chlorophenol: 1. The hydroquinone pathway, J. Org. Chem. 64 (1999) 8499- 8509.
DOI: 10.1021/jo990820y
Google Scholar
[22]
M. S. Ghamsari, A.R. Bahramian, High transparent sol-gel derived nanostructured TiO2 thin film, Materials Letters, 62 (2008) 361-364.
DOI: 10.1016/j.matlet.2007.05.053
Google Scholar
[23]
A. RangaRao, V. Dutta, Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition, Solar Energy Materials and Solar Cells. 9 (2007) 1075-1080.
DOI: 10.1016/j.solmat.2007.03.001
Google Scholar
[24]
C.H. Hung, B.I. Marinas, Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films, Environ. Sci. Technol. 31 (1997) 1440-1445.
DOI: 10.1021/es960685w
Google Scholar
[25]
S. Seifried, M. Winterer, H. Hahn, Nanocrystalline titania films and particles by chemical vapor synthesis, Chem. Vap. Dep. 6 (2000) 239.
DOI: 10.1002/1521-3862(200010)6:5<239::aid-cvde239>3.0.co;2-q
Google Scholar
[26]
Z. Ding, X. Hu, , G.Q. Lu,P.L. Yue, P.F., Greenfield, Novel silica gel supported TiO2 Photocatalyst synthesized by CVD method, Langmuir 16 (2000) 6216-6222.
DOI: 10.1021/la000119l
Google Scholar
[27]
A. Mills, N. Elliot, I.P. Parkin, S.A. O'Neill , R.J.H. Clark, Novel TiO2 CVD films for semiconductor photocatalysis, J. Photochem. Photobiol. Chem. 151(2002) 171-179.
Google Scholar
[28]
G. H. Kim, S. D. Kim, S. H. Park, Plasma enhanced chemical vapor deposition of TiO2 films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor, Chem. Eng. and Process 48 (2009) 1135-1139.
DOI: 10.1016/j.cep.2009.03.008
Google Scholar
[29]
P. Eiamchai , P. Chindaudom, A. Pokaipisit , P. Limsuwan Curr, A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation, Appl. Phys. 9 (2009) 707 – 712.
DOI: 10.1016/j.cap.2008.06.011
Google Scholar
[30]
M. H. Suhail, G. Mohan Rao, S. Mohan, DC reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films, J. Appl. Phys. 71 (1992) 1421-1427.
DOI: 10.1063/1.351264
Google Scholar
[31]
R. M. -Morillas, J. S. -Marcos, A. de Andrés, C. Prieto, Optical properties of nanometric TiO2 clusters deposited on thin films by high pressure sputtering, Surf. Coat. Technol. 204 (2010) 1893- 1897.
DOI: 10.1016/j.surfcoat.2009.11.007
Google Scholar
[32]
M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki, Effects of annealing treatment on optical properties of anatase TiO2 thin films, Int. J. Chem. Biomol. Eng. 12 (2008) 93-97.
Google Scholar
[33]
A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sell, Optical study of titanium dioxide thin films prepared by R.F. sputtering, M.J. Cond. Matt. 2 (1999) 153-156.
Google Scholar
[34]
C. H. Heo, Soon-Bo Lee, Jin-Hyo Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films 475 (2005) 183-188.
DOI: 10.1016/j.tsf.2004.08.033
Google Scholar
[35]
D. Guerin and S. Ismat Shah, Reactive Sputtering of Titanium Oxide Thin Films, J. Vac. Sci. Technol. A15(1997)712-715.
Google Scholar
[36]
M. Pera-Titus, V. Garcıa-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B Environ. 47 (2004) 219-256.
DOI: 10.1016/j.apcatb.2003.09.010
Google Scholar
[37]
C. J. Hapeman, B. G. Anderson, A. Torrents and A. J. Acher, Mechanistic investigations concerning the aqueous ozonolysis of bromacil, J. Agric. Food Chem. 60 (1997) 33-41.
DOI: 10.1021/jf9600420
Google Scholar
[38]
H. F. Lin, R. Ravikrishna, K.T. Valsaraj, Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1, 2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst, Sep. Purif. Technol. 28 (2002).
DOI: 10.1016/s1383-5866(02)00017-5
Google Scholar
[39]
J. Peller, O. Wiest, P.V. Kamat, Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds. Environ. Sci. Technol. 37 (2003) 1926-(1932).
DOI: 10.1021/es0261630
Google Scholar
[40]
R. Andreozzi, M. Canterino, R. Marotta, Fe(III) homogeneous photocatalysis for the removal of 1, 2-dichlorobenzene in aqueous solution by means UV lamp and solar light, Water Res. 40 (2006) 3785-3792.
DOI: 10.1016/j.watres.2006.05.029
Google Scholar
[41]
L. Zhang, S. Sawell, C. Moralejo, W.A. Anderson, Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene, Appl. Catal. B Environ. 71 (2007) 135-142.
DOI: 10.1016/j.apcatb.2006.08.016
Google Scholar
[42]
M. Bertelli, E. Selli, Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol, J. Hazard. Mater. 138(2006) 46-52.
DOI: 10.1016/j.jhazmat.2006.05.030
Google Scholar
[43]
M. Pera-Titus, V. Garcıa-Molina, M.A. Banos, J. Gim´enez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B Environ. 47 (2004) 219-256.
DOI: 10.1016/j.apcatb.2003.09.010
Google Scholar
[44]
M. Ikeda, Y. Kusumoto, S. Somekawa,P. Ngweniform, B. Ahmad, Effect of graphite silica on TiO2 photocatalysis in hydrogen production from water–methanol solution, J. of Photochem. Photobio. A: Chemistry 184 (2006) 306-312.
DOI: 10.1016/j.jphotochem.2006.04.031
Google Scholar
[45]
U. Diebold, the surface science of TiO2, Surface Science Reports 48 (2003) 53-229.
Google Scholar
[46]
M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat- Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal. B. Environ. 57 (2004) 23-30.
DOI: 10.1016/j.apcatb.2004.10.001
Google Scholar
[47]
S. Gautam, S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation, J. Chem. Engin. 110 (2005) 129-137.
DOI: 10.1016/j.cej.2005.03.021
Google Scholar