Photolysis and Photocatalysis of 1,4 Dichlorobenzene Using Sputtered TiO2 Thin Films

Article Preview

Abstract:

The rate of 1,4-dichlorobenzene (1,4-DCB) degradation in the aqueous phase was investigated under direct photolysis or photocatalysis in the presence of TiO2 thin film prepared by reactive sputtering using a metal Ti target and a reaction sputtering atmosphere of argon and oxygen. The prepared thin films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). XPS confirmed the presence of completely oxidized TiO2 films whereas XRD showed that the films contained a mixture of rutile and anatase phases with rutile being approximately 30% of the total volume. Two lamps, both of the same power but different wavelength range were employed as irradiation sources. Photocatalysis showed faster removal of 1,4-DCB as compared to direct photolysis. The complete degradation was attained using the freshly prepared TiO2 sample. The intermediate produced during the photocatalysis was benzoquinone. Photolysis using visible irradiation was relatively slower and both benzoquinone and hydroquinone were formed as intermediates. Higher initial degradation rates were observed when the same film was re-used, most probably due to the effect of washing of the TiO2 thin films surface with methanol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-225

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.O. Grimalt, J. Sunyer, V. Moreno, O.C. Amaral, M. Sala, A. Rosell, J.M. Anto, J. Albaiges, Risk excess of soft-tissue sarcoma and thyroidcancer in a community exposed to airborne organochlorinated compound mixtures with a high hexa-chlorobenzenecontent. Int J Cancer 56 (1994).

DOI: 10.1002/ijc.2910560209

Google Scholar

[2] O.C. Amaral, R. Otero, J.O. Grimalt, Volatile and semi-volatile organochlorine compounds in tap and river waters in the area of influence of a chlorinated organic solvent factory, Water Res. 30 (1996) 1876–1884.

DOI: 10.1016/0043-1354(96)00065-6

Google Scholar

[3] S. Heidrich, M. Schirmer, H. Weiss, P. Wycisk, J. Grossmann, and A. Kaschl, Regionally contaminated aquifers – toxicological relevance and remediation options (Bitterfeld case study), Toxicology. 205(2004) 143–155.

DOI: 10.1016/j.tox.2004.06.055

Google Scholar

[4] I. Marti, R. Lloret, J. Martın-Alonso, F. Ventura, Determination of chlorinated toluenes in raw and treated water samples from the Llobregat river by closed loop stripping analysis and gas chromatography-mass spectrometry detection, Journal of Chromatography A. 1077(2005).

DOI: 10.1016/j.chroma.2005.04.051

Google Scholar

[5] T. Huybrechts, J. Dewulf, H. Van Langenhove, Priority volatile organic compounds in surface waters of the southern North Sea, Environmental pollution (Barking, Essex: 1987). 133 (1987) 255-64.

DOI: 10.1016/j.envpol.2004.05.039

Google Scholar

[6] M. Pirbazari, B.N. Badriyha, R.J. Miltner, GAC Adsorber Design for Removal of Chlorinated Pesticides, ASCE Journal Environmental Engineering. 117 (1991) 80-100.

DOI: 10.1061/(asce)0733-9372(1991)117:1(80)

Google Scholar

[7] B.N. Badriyha , V. Ravindran, W. Den, M. Pirbazari, Bioadsorber efficiency, design, and performance forecasting for alachlor removal, Water Res. 37 (2003), 4051–4072.

DOI: 10.1016/s0043-1354(03)00266-5

Google Scholar

[8] P.R. Gogate, A.B. Pandit , A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research. 8 (2004) 553-597.

DOI: 10.1016/s1093-0191(03)00031-5

Google Scholar

[9] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation process (AOP) for water purification and recovery, Catal. Today 53(1999) 51-59.

DOI: 10.1016/s0920-5861(99)00102-9

Google Scholar

[10] R.W. Mattews, Purification of water with near—UV illuminated suspensions of titanium dioxide, Water Res. 24 (1990) 653-660.

DOI: 10.1016/0043-1354(90)90199-g

Google Scholar

[11] R.W. Mattews, An adsorption water purifier with in situ photocatalytic regeneration, J. Catal. 113 (1988) 549-555.

Google Scholar

[12] M. Gratzel, N. Serpone, E. Pelizzetti (Eds. ), Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, p.123.

Google Scholar

[13] Al-Ekabi H., A N Sperpone., E. Pelizzetti, C. Minero, M. A. Fox, R.B. Draper, TiO2-Mediated Degradation of 4-Chlorophenol alone and in a three- component mixture of 4-Chlorophenol, 2, 4-Dichlorophenol, and 2, 4, 5-Trichlorophenol in air-equilibrated aqueous media. Langmuir, 5 (1989).

DOI: 10.1021/la00085a048

Google Scholar

[14] C. S. Turchi and D. F. Ollis, Mixed reactant photocatalysis: Intermediates and mutual rate inhibition, J. Catal. 119 (1989) 483-496.

DOI: 10.1016/0021-9517(89)90176-0

Google Scholar

[15] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Application of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[16] P. Calza, C. Minero, E. Pelizzetti, Photocatalytic assisted hydrolysis of chlorinated methane in the presence of electron and hole scavangers, Environ. Sci. Technol. 31(1997)2198–2203.

DOI: 10.1021/es960660x

Google Scholar

[17] B. Morris Henry, Method of depositing titanium dioxide as a gate dielectric for MIS device fabrication, U.S. Patent 4 200474(29) (1980).

Google Scholar

[18] M. R. Kozlowski, P. S. Tyler, W. H. Smyrl, R. T. Atanasoki, Anodic TiO2 thin films, J. Electrochem. Soc. 136 (1989)442-450.

DOI: 10.1149/1.2096652

Google Scholar

[19] A. Mills, J. Wang, Photomineralisation of 4-chlorophenol by TiO2, thin films, J. Photochem. Photobiol. A: Chem. 118 (1998) 53–63.

Google Scholar

[20] A. Yasumori, K. Ishizu, S. Hayashi, K. Okada, preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Chem. 8 (1998) 2521 – 2524.

DOI: 10.1039/a803265c

Google Scholar

[21] X. Li, J.W. Cubbage, T.A. Tatzlaff, W.S. Jenks, Photocatalytic degradation of 4-chlorophenol: 1. The hydroquinone pathway, J. Org. Chem. 64 (1999) 8499- 8509.

DOI: 10.1021/jo990820y

Google Scholar

[22] M. S. Ghamsari, A.R. Bahramian, High transparent sol-gel derived nanostructured TiO2 thin film, Materials Letters, 62 (2008) 361-364.

DOI: 10.1016/j.matlet.2007.05.053

Google Scholar

[23] A. RangaRao, V. Dutta, Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition, Solar Energy Materials and Solar Cells. 9 (2007) 1075-1080.

DOI: 10.1016/j.solmat.2007.03.001

Google Scholar

[24] C.H. Hung, B.I. Marinas, Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films, Environ. Sci. Technol. 31 (1997) 1440-1445.

DOI: 10.1021/es960685w

Google Scholar

[25] S. Seifried, M. Winterer, H. Hahn, Nanocrystalline titania films and particles by chemical vapor synthesis, Chem. Vap. Dep. 6 (2000) 239.

DOI: 10.1002/1521-3862(200010)6:5<239::aid-cvde239>3.0.co;2-q

Google Scholar

[26] Z. Ding, X. Hu, , G.Q. Lu,P.L. Yue, P.F., Greenfield, Novel silica gel supported TiO2 Photocatalyst synthesized by CVD method, Langmuir 16 (2000) 6216-6222.

DOI: 10.1021/la000119l

Google Scholar

[27] A. Mills, N. Elliot, I.P. Parkin, S.A. O'Neill , R.J.H. Clark, Novel TiO2 CVD films for semiconductor photocatalysis, J. Photochem. Photobiol. Chem. 151(2002) 171-179.

Google Scholar

[28] G. H. Kim, S. D. Kim, S. H. Park, Plasma enhanced chemical vapor deposition of TiO2 films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor, Chem. Eng. and Process 48 (2009) 1135-1139.

DOI: 10.1016/j.cep.2009.03.008

Google Scholar

[29] P. Eiamchai , P. Chindaudom, A. Pokaipisit , P. Limsuwan Curr, A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation, Appl. Phys. 9 (2009) 707 – 712.

DOI: 10.1016/j.cap.2008.06.011

Google Scholar

[30] M. H. Suhail, G. Mohan Rao, S. Mohan, DC reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films, J. Appl. Phys. 71 (1992) 1421-1427.

DOI: 10.1063/1.351264

Google Scholar

[31] R. M. -Morillas, J. S. -Marcos, A. de Andrés, C. Prieto, Optical properties of nanometric TiO2 clusters deposited on thin films by high pressure sputtering, Surf. Coat. Technol. 204 (2010) 1893- 1897.

DOI: 10.1016/j.surfcoat.2009.11.007

Google Scholar

[32] M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki, Effects of annealing treatment on optical properties of anatase TiO2 thin films, Int. J. Chem. Biomol. Eng. 12 (2008) 93-97.

Google Scholar

[33] A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sell, Optical study of titanium dioxide thin films prepared by R.F. sputtering, M.J. Cond. Matt. 2 (1999) 153-156.

Google Scholar

[34] C. H. Heo, Soon-Bo Lee, Jin-Hyo Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films 475 (2005) 183-188.

DOI: 10.1016/j.tsf.2004.08.033

Google Scholar

[35] D. Guerin and S. Ismat Shah, Reactive Sputtering of Titanium Oxide Thin Films, J. Vac. Sci. Technol. A15(1997)712-715.

Google Scholar

[36] M. Pera-Titus, V. Garcıa-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B Environ. 47 (2004) 219-256.

DOI: 10.1016/j.apcatb.2003.09.010

Google Scholar

[37] C. J. Hapeman, B. G. Anderson, A. Torrents and A. J. Acher, Mechanistic investigations concerning the aqueous ozonolysis of bromacil, J. Agric. Food Chem. 60 (1997) 33-41.

DOI: 10.1021/jf9600420

Google Scholar

[38] H. F. Lin, R. Ravikrishna, K.T. Valsaraj, Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1, 2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst, Sep. Purif. Technol. 28 (2002).

DOI: 10.1016/s1383-5866(02)00017-5

Google Scholar

[39] J. Peller, O. Wiest, P.V. Kamat, Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds. Environ. Sci. Technol. 37 (2003) 1926-(1932).

DOI: 10.1021/es0261630

Google Scholar

[40] R. Andreozzi, M. Canterino, R. Marotta, Fe(III) homogeneous photocatalysis for the removal of 1, 2-dichlorobenzene in aqueous solution by means UV lamp and solar light, Water Res. 40 (2006) 3785-3792.

DOI: 10.1016/j.watres.2006.05.029

Google Scholar

[41] L. Zhang, S. Sawell, C. Moralejo, W.A. Anderson, Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene, Appl. Catal. B Environ. 71 (2007) 135-142.

DOI: 10.1016/j.apcatb.2006.08.016

Google Scholar

[42] M. Bertelli, E. Selli, Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol, J. Hazard. Mater. 138(2006) 46-52.

DOI: 10.1016/j.jhazmat.2006.05.030

Google Scholar

[43] M. Pera-Titus, V. Garcıa-Molina, M.A. Banos, J. Gim´enez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B Environ. 47 (2004) 219-256.

DOI: 10.1016/j.apcatb.2003.09.010

Google Scholar

[44] M. Ikeda, Y. Kusumoto, S. Somekawa,P. Ngweniform, B. Ahmad, Effect of graphite silica on TiO2 photocatalysis in hydrogen production from water–methanol solution, J. of Photochem. Photobio. A: Chemistry 184 (2006) 306-312.

DOI: 10.1016/j.jphotochem.2006.04.031

Google Scholar

[45] U. Diebold, the surface science of TiO2, Surface Science Reports 48 (2003) 53-229.

Google Scholar

[46] M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat- Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal. B. Environ. 57 (2004) 23-30.

DOI: 10.1016/j.apcatb.2004.10.001

Google Scholar

[47] S. Gautam, S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation, J. Chem. Engin. 110 (2005) 129-137.

DOI: 10.1016/j.cej.2005.03.021

Google Scholar