Photocatalysts for Solar-Induced Water Disinfection: New Developments and Opportunities

Article Preview

Abstract:

Recent years have seen a surge of interest in the application of solar energy for water disinfection by using nanostructured photocatalysts elaborately designed and fabricated. Photocatalysis has its unique advantage for utilizing sunlight to drive the disinfection process. The highly reactive oxygen species (ROS) serve as the main oxidants and are capable of inactivating microorganisms, including viruses, bacteria, spores and protozoa. This chapter presents an overview of current research activities that center on the preparation, characterization and application of highly efficient photocatalysts for water disinfection under both UV and visible light irradiation. It is organized into two major parts. One is the development of TiO2-based photocatalysts including surface noble metal modified, ion doped, dye-sensitized, and composite TiO2. The other part is the introduction of new types of photocatalysts and advanced technologies that have recently fascinated the scientific community. Particular attention is given to the pioneering fields such as graphene-based photocatalysts, plasmonic-metal nanostructures and naturally occurring photocatalysts. Finally, we conclude with a discussion of what major advancements are needed to move the field of photocatalytic water disinfection forward.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-89

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: including health in the equation, Environ. Sci. Technol. 41 (2007) 17-24.

DOI: 10.1021/es072435t

Google Scholar

[2] G.K. Pitman, Bridging troubled waters—assessing the world bank water resources strategy, World Bank Publications, Washington DC, (2002).

DOI: 10.1596/0-8213-5140-0

Google Scholar

[3] World Health Organization, Emerging Issues in Water and Infectious Disease 1–22, Geneva, (2003).

Google Scholar

[4] A. Smith, Nanotechnology: an answer to the world's water crisis, Chem. Int. 31 (2009) 12-14.

Google Scholar

[5] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301-310.

DOI: 10.1038/nature06599

Google Scholar

[6] M.J. Nieuwenhuijsen, M.B. Toledano, N.E. Eaton, J. Fawell, P. Elliott, Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review, Occup. Environ. Med. 57 (2000) 73-85.

DOI: 10.1136/oem.57.2.73

Google Scholar

[7] E.A. Bryant, G.P. Fulton, G.C. Budd, Disinfection Alternatives for Safe Drinking Water (Environmental engineering), van Nostrand Reinhold, New York, (1992).

Google Scholar

[8] W.J. Huang, G. C Fang, C.C. Wang, The determination and fate of disinfection by-products from ozonation of polluted raw water, Sci. Total Environ. 345 (2005) 261-272.

DOI: 10.1016/j.scitotenv.2004.10.019

Google Scholar

[9] C. Sichel, J. Blanco, S. Malato, P. Fernández-Ibáñez, Effects of experimental condition on E. coli survival during solar photocatalytic water disinfection. J. Photochem. Photobiol. A: Chem. 189 (2007) 239-246.

DOI: 10.1016/j.jphotochem.2007.02.004

Google Scholar

[10] K.P. Kühn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003) 71-77.

DOI: 10.1016/s0045-6535(03)00362-x

Google Scholar

[11] G.G. Hancock, E.M. Davis, Regrowth potential of coliforms after UV disinfection of municipal wastewater, J. Environ. Sci. Health., Part A 34 (1999) 1737-1743.

DOI: 10.1080/10934529909376925

Google Scholar

[12] R.J. Watt, S.H. Kong, M.P. Orr, G.C. Miller, B.E. Herny, Photocatalytic inactivation of coliform bacteria and virused in secondary wastewater effluent. Water Res. 29 (1995) 95-100.

DOI: 10.1016/0043-1354(94)e0122-m

Google Scholar

[13] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photo-electrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29 (1985) 211-214.

DOI: 10.1111/j.1574-6968.1985.tb00864.x

Google Scholar

[14] P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin, Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide, Appl. Catal. B: Environ. 41 (2003) 371-386.

DOI: 10.1016/s0926-3373(02)00172-8

Google Scholar

[15] P.S.M. Dunlop, M. Ciavola, L. Rizzo, J. A. Byrne, Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags, Chemosphere 85 (2011) 1160-1166.

DOI: 10.1016/j.chemosphere.2011.09.006

Google Scholar

[16] A.S. Gong, C.A. Lanzl, D.M. Cwiertny, S.L. Walker, Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coil, Environ. Sci. Technol. 46 (2012) 241-249.

DOI: 10.1021/es202541r

Google Scholar

[17] I. Tatlidil, M. Sokmen, C. Breen, F. Clegg, C.K. Buruk, E. Bacaksiz, Degradation of Candida albicans on TiO2 and Ag-TiO2 thin films prepared by sol-gel and nanosuspensions, J. Sol-Gel. Sci. Technol. 60 (2011) 23-32.

DOI: 10.1007/s10971-011-2546-0

Google Scholar

[18] K.P. Kühn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003)71-77.

DOI: 10.1016/s0045-6535(03)00362-x

Google Scholar

[19] J.A.H. Melián, J.M.D. Rodríguez, A.V. Suárez, E.T. Rendón, C.V. Campo, J. Arana, J.P. Peña, The photocatalytic disinfection of urban waste waters, Chemosphere 41 (2000) 323-327.

DOI: 10.1016/s0045-6535(99)00502-0

Google Scholar

[20] T. Saito, T. Iwase, J. Horie, T. Morioka, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B: Biol. 14 (1992) 369-379.

DOI: 10.1016/1011-1344(92)85115-b

Google Scholar

[21] B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere 52 (2003) 277-281.

DOI: 10.1016/s0045-6535(03)00051-1

Google Scholar

[22] R.J. Watts, S. Kong, M.P. Orr, G.C. Miller, B.E. Henry, Photocatalytic inactivation of coliform bacteria and viruses in secondary waste water effluent, Water Res. 29 (1995) 95-100.

DOI: 10.1016/0043-1354(94)e0122-m

Google Scholar

[23] M. Cho, J. Yoon, Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems, J. Appl. Microbiol. 104 (2008) 759-766.

DOI: 10.1111/j.1365-2672.2007.03682.x

Google Scholar

[24] H. Ryu, D. Gerrity, J.C. Crittenden, M. Abbaszadegan, Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation, Water Res. 42 (2008) 1523-1530.

DOI: 10.1016/j.watres.2007.10.037

Google Scholar

[25] S. Navalon, M. Alvaro, H. Garcia, D. Escrig, V. Costa, Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst, Water Sci. Technol. 59 (2009) 639-645.

DOI: 10.2166/wst.2009.016

Google Scholar

[26] D.F. Ollis, Contaminant degradation in water, Environ. Sci. Technol. 19 (1985) 480-484.

Google Scholar

[27] W.J. Wang, L.S. Zhang, T.C. An, G.Y. Li, H.Y. Yip, P.K. Wong, Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-codoped TiO2 microspheres: the role of different reactive species, Appl. Catal. B: Environ. 108-109 (2011).

DOI: 10.1016/j.apcatb.2011.08.015

Google Scholar

[28] G. Gottschalk, Biosynthesis of Escherichia coli cells from glucose, in: M.P. Starr (Ed. ), Bacterial Metabolism, Springer-Verlag, New York, NY, 1979, pp.34-80.

DOI: 10.1007/978-1-4684-0465-4_3

Google Scholar

[29] Y.M. Chen, A.H. Lu, Y. Li, L.S. Zhang, H.Y. Yip, H.J. Zhao, T.C. An, P.K. Wong, Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 45 (2011) 5689-5695.

DOI: 10.1021/es200778p

Google Scholar

[30] O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal. B: Environ. 98 (2010) 27-38.

DOI: 10.1016/j.apcatb.2010.05.001

Google Scholar

[31] D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods 28 (1999) 1-50.

DOI: 10.1080/03602549909351643

Google Scholar

[32] C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed. 33 (2007) 359-375.

DOI: 10.1163/156856707779238775

Google Scholar

[33] H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol. 90 (2011) 1847-1868.

DOI: 10.1007/s00253-011-3213-7

Google Scholar

[34] A. Markowska-Szczupak, K. Ulfig, A.W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: an overview, Catal. Today 169 (2011) 249-257.

DOI: 10.1016/j.cattod.2010.11.055

Google Scholar

[35] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[36] J.C. Ireland, P.K. lostermann, E.W. Rice, R.M. Clark, Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbiol. 59 (1993) 1668-1670.

DOI: 10.1128/aem.59.5.1668-1670.1993

Google Scholar

[37] P. Zhang, R.J. Scrudato, G. Germano, Solarcatalytic inactivation of Escherichia coli in aqueous solutions using TiO2 as catalyst, Chemosphere 28 (1994) 607-611.

DOI: 10.1016/0045-6535(94)90302-6

Google Scholar

[38] H.N. Pham, T. McDowell, E. Wilkins, Photocatalytically‐mediated disinfection of water using TiO2 as a catalyst and spore‐forming Bacillus pumilus as a model, J. Environ. Sci. Health A: Environ. Sci. Eng. 30 (1995) 627-636.

DOI: 10.1080/10934529509376221

Google Scholar

[39] Y.W. Cheng, R.C.Y. Chan, P.K. Wong, Disinfection of Legionella pneumophila by photocatalytic oxidation, Water Res. 41 (2007) 842-852.

DOI: 10.1016/j.watres.2006.11.033

Google Scholar

[40] T.Y. Leung, C.Y. Chan, C. Hu, J.C. Yu, P.K. Wong, Photocatalytic disinfection of marine bacteria using fluorescent light, Water Res. 42 (2008) 4827-4837.

DOI: 10.1016/j.watres.2008.08.031

Google Scholar

[41] O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust, J. Photochem. Photobiol. A: Chem. 165 (2004) 103-107.

DOI: 10.1016/j.jphotochem.2004.03.005

Google Scholar

[42] F. Méndez-Hermida, E. Ares-Mazás, K.G. McGuigan, M. Boyle, C. Sichel, P. Fernández-Ibáñez, Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2, J. Photochem. Photobiol. B: Biol. 88 (2007).

DOI: 10.1016/j.jphotobiol.2007.05.004

Google Scholar

[43] L.R. Quisenberry, L.H. Loetscher, J.E. Boyd, Catalytic inactivation of bacteria using Pd-modified titania, Catal. Commun. 10 (2009) 1417-1422.

DOI: 10.1016/j.catcom.2009.03.013

Google Scholar

[44] E.A. Kozlova, A.S. Safatov, S.A. Kiselev, V.Y. Marchenko, A.A. Sergeev, M.O. Skarnovich, E.K. Emelyanova, M.A. Smetannikova, G.A. Buryak, A.V. Vorontsov, Inactivation and Mineralization of Aerosol Deposited Model Pathogenic Microorganisms over TiO2 and Pt/TiO2, Environ. Sci. Technol. 44 (2010).

DOI: 10.1021/es100156p

Google Scholar

[45] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity, Biomaterials, 23 (2002) 887-892.

DOI: 10.1016/s0142-9612(01)00198-3

Google Scholar

[46] W.L. Chou, D.G. Yu, M.C. Yang, The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment, Polymer. Adv. Tech. 16 (2005) 600-607.

DOI: 10.1002/pat.630

Google Scholar

[47] T. Yuranova, A.G. Rincon, C. Pulgarin, D. Laub, N. Xantopoulos, H.J. Mathieu, J. Kiwi, Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli, J. Photochem. Photobiol. A: Chem. 181 (2006).

DOI: 10.1016/j.jphotochem.2005.12.020

Google Scholar

[48] A. Kabacka, M. Ferrer, A. Martínez-Arias, M. Fernández-García, Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation, Appl. Catal. B: Environ. 84 (2008) 87-93.

DOI: 10.1016/j.apcatb.2008.02.020

Google Scholar

[49] Y. Liu, X.L. Wang, F.G. Yang, X.R. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mat. 114 (2008) 431-439.

DOI: 10.1016/j.micromeso.2008.01.032

Google Scholar

[50] K.D. Kim, D.N. Han, J.B. Lee, H.T. Kim, Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method, Scripta Mater. 54 (2006) 143-146.

DOI: 10.1016/j.scriptamat.2005.09.054

Google Scholar

[51] C.A. Castro, A. Jurado, D. Sissa, S.A. Giraldo, Performance of Ag-TiO2 photocatalysts towards the photocatalytic disinfection of water under interior-lighting and solar-simulated light irradiations, Int. J. Photoenergy (2012) 261045.

DOI: 10.1155/2012/261045

Google Scholar

[52] R.V. Kumar, G. Raza, Photocatalytic disinfection of water with Ag-TiO2 nanocrystalline composite, Ionics 15 (2009) 579-587.

DOI: 10.1007/s11581-008-0304-2

Google Scholar

[53] S.Y. Ye, M.L. Fan, X.L. Song, S.C. Luo, Enhanced photocatalytic disinfection of P. expansum in cold storage using a TiO2/ACF film, Int. J. Food Microbiol. 136 (2010) 332-339.

DOI: 10.1016/j.ijfoodmicro.2009.09.028

Google Scholar

[54] M.V. Liga, E.L. Bryant, V.L. Colvin, Q.L. Li, Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment, Water Res. 45 (2011) 535-544.

DOI: 10.1016/j.watres.2010.09.012

Google Scholar

[55] M.I. Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Appl. Catal. B: Environ. 23 (1999) 89-114.

DOI: 10.1016/s0926-3373(99)00069-7

Google Scholar

[56] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci. 352 (2010), 68-74.

DOI: 10.1016/j.jcis.2010.08.012

Google Scholar

[57] C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd–TiO2, Catal. Commun. 12 (2011) 826-829.

DOI: 10.1016/j.catcom.2011.01.017

Google Scholar

[58] J.C. Yu, W.K. Ho, J. Lin, H.Y. Yip, P.K. Wong, Photocatalytic Activity, Antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol. 37 (2003) 2296-2301.

DOI: 10.1021/es0259483

Google Scholar

[59] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[60] Z. Zhao, Q. Liu, Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation, J. Phys. D: Appl. Phys. 41(2008) 025105.

DOI: 10.1088/0022-3727/41/2/025105

Google Scholar

[61] Q. Li, R. Xie, Y.W. Li, E.A. Mintz, J.K. Shang, Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide, Environ. Sci. Technol. 41 (2007) 5050-5056.

DOI: 10.1021/es062753c

Google Scholar

[62] P. Wu, R. Xie, J.K. Shang, Enhanced visible-light photocatalytic disinfection of bacterial spores by palladium-modified nitrogen-doped titanium oxide, J. Am. Ceram. Soc. 91 (2008) 2957-2962.

DOI: 10.1111/j.1551-2916.2008.02573.x

Google Scholar

[63] Q. Li, Y.W. Li, P. Wu, R. Xie, J.K. Shang, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic memory, Adv. Mater. 20 (2008) 3717-3723.

DOI: 10.1002/adma.200800685

Google Scholar

[64] Q. Li, P. Wu, R. Xie, J.K. Shang, Enhanced photocatalytic disinfection of microorganisms by transition-metal-ion-modification of nitrogen-doped titanium oxide, J. Mater. Res. 25 (2010) 167-176.

DOI: 10.1557/jmr.2010.0005

Google Scholar

[65] J.C. Yu, W.K. Ho, J.G. Yu, H. Yip, P.K. Wong, J.C. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.

DOI: 10.1021/es035374h

Google Scholar

[66] J.A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N.C. Castillo, J. Kiwi, C. Pulgarin, Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B: Environ. 84 (2008) 448-456.

DOI: 10.1016/j.apcatb.2008.04.030

Google Scholar

[67] A.K. Jana, Solar cells based on dyes, J. Photochem. Photobiol. A: Chem. 132 (2000) 1-17.

Google Scholar

[68] Z.L. Jin, X.J. Zhang, G.X. Lu, S.B. Li, Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2—Investigation of different noble metal loading, J. Mol. Catal. A: Chem. 259 (2006).

DOI: 10.1016/j.molcata.2006.06.035

Google Scholar

[69] F.H. Hussein, A.N. Alkhateeb, Photo-oxidation of benzyl alcohol under natural weathering conditions, Desalination, 209 (2007) 350-355.

DOI: 10.1016/j.desal.2007.04.050

Google Scholar

[70] Z.L. Jin, X.J. Zhang, Y.X. Li, S.B. Li, G.X. Lu, 5. 1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation, Catal. Commun. 8 (2007) 1267-1273.

DOI: 10.1016/j.catcom.2006.11.019

Google Scholar

[71] K.S. Yao, T.C. Cheng, S.J. Li, L.Y. Yang, K.C. Tzeng, C.Y. Chang, Y. Ko, Comparison of photocatalytic activities of various dye-modified TiO2 thin films under visible light, Surf. Coat. Technol. 203 (2008) 922-924.

DOI: 10.1016/j.surfcoat.2008.08.006

Google Scholar

[72] K. Hashimoto, M. Hiramoto, T. Kajiwara, T. Sakata, Luminescence decays and spectra of Ru(bpy)32+ adsorbed on titania in vacuo and in the presence of water vapor, J. Phys. Chem. 92 (1988) 4636-4640.

DOI: 10.1021/j100327a015

Google Scholar

[73] K.S. Yao, D.Y. Wang, C.Y. Chang, W.Y. Ho, L.Y. Yang, Characteristics and photocatalytic activity of TiO2 thin film sensitized with a porphyrin dye, J. Nanosci. Nanotechnol. 8 (2008) 2699-2702.

DOI: 10.1166/jnn.2008.495

Google Scholar

[74] K.S. Yao, D.Y. Wang, C.Y. Chang, K.W. Weng, L.Y. Yang, S.J. Lee, T.C. Cheng, C.C. Hwang, Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO2 thin film activated by visible light, Surf. Coat. Technol. 202 (2007).

DOI: 10.1016/j.surfcoat.2007.07.102

Google Scholar

[75] R.A. Doong, C.H. Chen, R.A. Maithreepala, S.M. Chang, The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions, Water Res. 35 (2001) 2873-2880.

DOI: 10.1016/s0043-1354(00)00580-7

Google Scholar

[76] N. Laot, N. Narkis, I. Neeman, D. Bilanovic, R. Armon, TiO2 photocatalytic inactivation of selected microorganisms under various conditions: sunlight, intermittent and variable irradiation intensity, CdS augmentation and entrapment of TiO2 into sol-gel, J. Adv. Oxid. Technol. 4 (1999).

Google Scholar

[77] V. Keller, F. Garin, Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase, Catal. Commun. 4 (2003) 377-383.

DOI: 10.1016/s1566-7367(03)00089-x

Google Scholar

[78] G.L. Zhao, H. Kozuka, T. Yoko, Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles, Thin Solid Films, 277 (1996) 147-154.

DOI: 10.1016/0040-6090(95)08006-6

Google Scholar

[79] E. Bae, W. Choi, Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light, Environ. Sci. Technol. 37 (2003) 147-152.

DOI: 10.1021/es025617q

Google Scholar

[80] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc. 130 (2008) 1676-1680.

DOI: 10.1021/ja076503n

Google Scholar

[81] C. Hu, Y.Q. Lan, J.H. Qu, X.X. Hu, A.M. Wang, Ag/AgBr/TiO2 Visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.

DOI: 10.1021/jp0564400

Google Scholar

[82] Y.Q. Lan, C. Hu, X.X. Hu, J.H. Qu, Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B: Environ. 73 (2007) 354-360.

DOI: 10.1016/j.apcatb.2007.01.004

Google Scholar

[83] M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria, J. Am. Chem. Soc. 129 (2007) 9552-9553.

DOI: 10.1021/ja072492m

Google Scholar

[84] C. Hu, J. Guo, J.H. Qu, X. X. Hu, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir 23 (2007) 4982-4987.

DOI: 10.1021/la063626x

Google Scholar

[85] K. Chockalingam, A. Ganapathy, G. Paramasivan, M. Govindasamy, A. Viswanathan, NiO/TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Am. Ceram. Soc. 94 (2011), 2499-2505.

DOI: 10.1111/j.1551-2916.2011.04403.x

Google Scholar

[86] O. Akhavan1, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, J. Phys. D: Appl. Phys. 42 (2009) 225305.

DOI: 10.1088/0022-3727/42/22/225305

Google Scholar

[87] K. Page, M. Wilson, N.J. Mordan, W. Chrzanowski, J. Knowles, I.P. Parkin, Study of the adhesion of Staphylococcus aureus to coated glass substrates, J. Mater. Sci. 46 (2011) 6355-6363.

DOI: 10.1007/s10853-011-5582-9

Google Scholar

[88] J. Alarcón, S. Ponce, F. Paraguay-Delgado, J. Rodríguez, Effect of γ-irradiation on the growth of ZnO nanorod films for photocatalytic disinfection of contaminated water, J. Colloid Interf. Sci. 364 (2011) 49-55.

DOI: 10.1016/j.jcis.2011.08.025

Google Scholar

[89] J. Rodríguez, F. Paraguay-Delgado, A. López, J. Alarcón, W. Estrada, Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water, Thin Solid Films 519 (2010) 729-735.

DOI: 10.1016/j.tsf.2010.08.139

Google Scholar

[90] M.A. Gondal, A. Khalil, Rapid disinfection of E-Coliform contaminated water using WO3 semiconductor catalyst by laser-induced photocatalytic process, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 43 (2008) 488-494.

DOI: 10.1080/10934520701796341

Google Scholar

[91] H.T. Yu, X. Quan, Y.B. Zhang, N. Ma, S. Chen, H.M. Zhao, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir 24 (2008) 7599-7604.

DOI: 10.1021/la063626x.s001

Google Scholar

[92] I.M. Butterfield, P.A. Christensen, T.P. Curtis, J. Gunlazuardi, Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement, Water Res. 31 (1997) 675-677.

DOI: 10.1016/s0043-1354(96)00391-0

Google Scholar

[93] P.S.M. Dunlop, J.A. Byrne, N. Manga, B.R. Eggins, The photocatalytic removal of bacterial pollutants from drinking water, J. Photochem. Photobiol. A: Chem. 148 (2002) 355-363.

DOI: 10.1016/s1010-6030(02)00063-1

Google Scholar

[94] W.W. Wilson, M.M. Wade, S.C. Holman, F.R. Champlin, Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements, J. Microbiol. Methods, 43 (2001) 153-164.

DOI: 10.1016/s0167-7012(00)00224-4

Google Scholar

[95] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999).

DOI: 10.1002/chin.200012027

Google Scholar

[96] J.A. Seabold, K.S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, J. Am. Chem. Soc. 134 (2012) 2186-2192.

DOI: 10.1021/ja209001d

Google Scholar

[97] A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 28 (1999) 1103-1104.

DOI: 10.1246/cl.1999.1103

Google Scholar

[98] C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater. 17 (2005) 3537-3545.

DOI: 10.1021/cm0501517

Google Scholar

[99] A. Martínez-de la Cruz, S.O. Alfaro, E.L. Cuéllar, U.O. Méndez, Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor, Catal. Today, 129 (2007) 194-199.

DOI: 10.1016/j.cattod.2007.08.004

Google Scholar

[100] J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem. Int. Ed. 43 (2004) 4463-4466.

DOI: 10.1002/anie.200353594

Google Scholar

[101] M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region, J. Chem. Phys. 117 (2002) 7313-7318.

DOI: 10.1063/1.1507101

Google Scholar

[102] X.X. Hu, C. Hu, J.H. Qu, Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation, Appl. Catal. B: Environ. 69 (2006) 17-23.

DOI: 10.1016/j.apcatb.2006.05.008

Google Scholar

[103] C. Hu, X.X. Hu, J. Guo, J.H. Qu, Efficient destruction of pathogenic bacteria with NiO/SrBi2O4 under visible light irradiation, Environ. Sci. Technol. 40 (2006) 5508-5513.

DOI: 10.1021/es052405v

Google Scholar

[104] J. Ren, W. Wang, L. Zhang, J. Chang, S. Hu, Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light, Catal. Commun. 10 (2009) 1940-(1943).

DOI: 10.1016/j.catcom.2009.07.006

Google Scholar

[105] L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr−Ag−Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol. 44 (2010).

DOI: 10.1021/es903087w

Google Scholar

[106] L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components, Appl. Catal. A: Gen. 363 (2009) 221-229.

DOI: 10.1016/j.apcata.2009.05.028

Google Scholar

[107] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.

DOI: 10.1038/nature04233

Google Scholar

[108] S. Latil, L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97 (2006) 036803.

DOI: 10.1103/physrevlett.97.036803

Google Scholar

[109] M.Y. Han, B. Oezyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98 (2007) 206805.

Google Scholar

[110] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[111] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[112] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nature Mater. 6 (2007) 183-191.

Google Scholar

[113] J. Wu, W. Pisula, K. Müllen. Graphenes as potential material for electronics, Chem. Rev. 107 (2007) 718-747.

DOI: 10.1021/cr068010r

Google Scholar

[114] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48 (2009) 7752-7777.

DOI: 10.1002/anie.200901678

Google Scholar

[115] M.J. Allen, V.C. Tung, R.B. Kaner. Honeycomb carbon: a review of graphene, Chem. Rev. 110 (2010) 132-145.

DOI: 10.1021/cr900070d

Google Scholar

[116] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: an historial account of graphene and some perspectives for its future, Angew. Chem. Int. Ed. 49 (2010) 9336-9345.

DOI: 10.1002/anie.201003024

Google Scholar

[117] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J. R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[118] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for garbon-based materials, Small 6 (2010) 711-723.

DOI: 10.1002/smll.200901934

Google Scholar

[119] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10 (2010) 577-583.

DOI: 10.1021/nl9035109

Google Scholar

[120] G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano 2 (2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[121] O.V. Prezhdo, P.V. Kamat, G.C. Schatz, Virtual issue: graphene and functionalized graphene, J. Phys. Chem. C 115 (2011) 3195-3197.

DOI: 10.1021/jp200538f

Google Scholar

[122] P.V. Kamat, Graphene-based nanoassemblies for energy conversion, J. Phys. Chem. Lett. 2 (2011) 242-251.

Google Scholar

[123] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.

DOI: 10.1039/c1cs15172j

Google Scholar

[124] X. An, J.C. Yu, Graphene-based photocatalytic composites, RSC Adv. 1 (2011) 1426-1434.

Google Scholar

[125] O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C, 113 (2009) 20214-20220.

DOI: 10.1021/jp906325q

Google Scholar

[126] O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation, J. Phys. Chem. B 115 (2011) 6279-6288.

DOI: 10.1021/jp200686k

Google Scholar

[127] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41 (2008) 1578-1586.

DOI: 10.1021/ar7002804

Google Scholar

[128] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nature Mater. 9 (2010) 193-204.

DOI: 10.1038/nmat2630

Google Scholar

[129] D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133 (2011) 5202-5205.

DOI: 10.1021/ja200086g

Google Scholar

[130] C.G. Silva, R. Juárez, T. Marino, R. Molinari, H. García, Infuence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja1086358

Google Scholar

[131] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Mater. 10 (2011) 911-921.

DOI: 10.1038/nmat3151

Google Scholar

[132] P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Ag/AgBr/WO3·H2O: Visible-light photocatalyst for bacteria destruction, Inorg. Chem. 48 (2009) 10697-10702.

DOI: 10.1021/ic9014652

Google Scholar

[133] X.X. Hu, C. Hu, T.W. Peng, X.F. Zhou, J.H. Qu, Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag−AgI/Al2O3 under visible-light irradiation, Environ. Sci. Technol. 44 (2010) 7058-7062.

DOI: 10.1021/es1012577

Google Scholar

[134] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO, Mater. Sci. Semicond. Process. 14 (2011) 133-138.

DOI: 10.1016/j.mssp.2011.01.017

Google Scholar

[135] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO, Solid State Sci. 13 (2011) 923-928.

DOI: 10.1016/j.solidstatesciences.2011.02.016

Google Scholar

[136] P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, J. Hao, Y. Dai, Z.Y. Wang, J.Y. Wei, J. Zhan, S.Y. Wang, J.P. Wang, M.H. Whangbo, Highly efficient visible-light plasmonic photocatalyst Ag@AgBr, Chem. Eur. J. 15 (2009) 1821-1824.

DOI: 10.1002/chem.200802327

Google Scholar

[137] C.H. An, R.P. Wang, S.T. Wang, X.Y. Zhang, Converting AgCl nanocubes to sunlight-driven plasmonic AgCl: Ag nanophotocatalyst with high activity and durability, J. Mater. Chem. 21 (2011) 11532–11536.

DOI: 10.1039/c1jm10244c

Google Scholar

[138] H. Zhu, X. Ke, X. Yang, S. Sarina, H. Liu, Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet ligh, Angew. Chemie. Int. Ed. 49 (2010) 9657-9661.

DOI: 10.1002/anie.201003908

Google Scholar

[139] S. Navalon, M. de Miguel, R. Martin, M. Alvaro, H. Garcia, Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light, J. Am. Chem. Soc. 133 (2011) 2218-2226.

DOI: 10.1021/ja108816p

Google Scholar

[140] P. Christopher, H. Xin, S. Linic, Visible light enhanced catalytic oxidation reactions on plasmonic Ag nanostructures, Nature Chem. 3 (2011) 467-472.

DOI: 10.1038/nchem.1032

Google Scholar

[141] X. Chen, H.Y. Zhu, J.C. Zhao, Z.F. Zheng, X. P. Gao, Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chemie. Int. Ed. 47 (2008) 5353-5356.

DOI: 10.1002/anie.200800602

Google Scholar

[142] H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible irradiation, Chem. Commun, (2010) 7524-7526.

DOI: 10.1039/b917052a

Google Scholar

[143] X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, H. Zhu, Supported silver particles as photocatalysts under ultraviolet and visible light irradiation, Green Chem. 12 (2010) 414-419.

DOI: 10.1039/b921696k

Google Scholar

[144] Y. Li, A.H. Lu, C.Q. Wang, Semiconducting mineralogical characteristics of natural sphalerite gestating visible-light photocatalysis, Acta Geol. Sin 83 (2009) 633-639.

DOI: 10.1111/j.1755-6724.2009.00053.x

Google Scholar

[145] Y. Li, A.H. Lu, C.Q. Wang, Photocatalytic reduction of Cr(VI) by natural sphalerite suspensions under visible light irradiation, Acta Geol. Sin 80 (2006) 267-272.

DOI: 10.1111/j.1755-6724.2006.tb00241.x

Google Scholar

[146] Y. Li, A.H. Lu, C.Q. Wang, X.L. Wu, Characterization of natural sphalerite as a novel visible-light-driven photocatalyst, Solar Energy Mater. Solar Cells 92 (2008) 953-959.

DOI: 10.1016/j.solmat.2008.02.023

Google Scholar

[147] Y. Li, A.H. Lu, S. Jin, C.Q. Wang, Photo-reductive decolorization of an azo dye by natural sphalerite: case study of a new type of visible light-sensitized photocatalyst, J. Hazard. Mater. 170 (2009) 479-486.

DOI: 10.1016/j.jhazmat.2009.04.071

Google Scholar

[148] M. Paulose, L. Peng, K.C. Popat, O.K. Varghese, T.J. LaTempa, N. Bao, T.A. Desai, C.A. Grimes, Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes, J. Membr. Sci. 319 (2008) 199-205.

DOI: 10.1016/j.memsci.2010.09.011

Google Scholar

[149] X.W. Zhang, T. Zhang, J. Ng, D.D. Sun, High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment. Adv. Funct. Mater. 19 (2009) 3731-3736.

DOI: 10.1002/adfm.200901435

Google Scholar

[150] L. Liu, Z. Liu, H. Bai, D.D. Sun, Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane, Water Res. 46 (2012) 1101-1112.

DOI: 10.1016/j.watres.2011.12.009

Google Scholar

[151] M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes, Nature Commun. 3 (2012).

DOI: 10.1038/ncomms1661

Google Scholar