p.1
p.63
p.90
p.117
p.127
p.138
p.186
p.215
Photocatalysts for Solar-Induced Water Disinfection: New Developments and Opportunities
Abstract:
Recent years have seen a surge of interest in the application of solar energy for water disinfection by using nanostructured photocatalysts elaborately designed and fabricated. Photocatalysis has its unique advantage for utilizing sunlight to drive the disinfection process. The highly reactive oxygen species (ROS) serve as the main oxidants and are capable of inactivating microorganisms, including viruses, bacteria, spores and protozoa. This chapter presents an overview of current research activities that center on the preparation, characterization and application of highly efficient photocatalysts for water disinfection under both UV and visible light irradiation. It is organized into two major parts. One is the development of TiO2-based photocatalysts including surface noble metal modified, ion doped, dye-sensitized, and composite TiO2. The other part is the introduction of new types of photocatalysts and advanced technologies that have recently fascinated the scientific community. Particular attention is given to the pioneering fields such as graphene-based photocatalysts, plasmonic-metal nanostructures and naturally occurring photocatalysts. Finally, we conclude with a discussion of what major advancements are needed to move the field of photocatalytic water disinfection forward.
Info:
Periodical:
Pages:
63-89
Citation:
Online since:
December 2012
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: including health in the equation, Environ. Sci. Technol. 41 (2007) 17-24.
DOI: 10.1021/es072435t
[2] G.K. Pitman, Bridging troubled waters—assessing the world bank water resources strategy, World Bank Publications, Washington DC, (2002).
[3] World Health Organization, Emerging Issues in Water and Infectious Disease 1–22, Geneva, (2003).
[4] A. Smith, Nanotechnology: an answer to the world's water crisis, Chem. Int. 31 (2009) 12-14.
[5] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301-310.
DOI: 10.1038/nature06599
[6] M.J. Nieuwenhuijsen, M.B. Toledano, N.E. Eaton, J. Fawell, P. Elliott, Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review, Occup. Environ. Med. 57 (2000) 73-85.
DOI: 10.1136/oem.57.2.73
[7] E.A. Bryant, G.P. Fulton, G.C. Budd, Disinfection Alternatives for Safe Drinking Water (Environmental engineering), van Nostrand Reinhold, New York, (1992).
[8] W.J. Huang, G. C Fang, C.C. Wang, The determination and fate of disinfection by-products from ozonation of polluted raw water, Sci. Total Environ. 345 (2005) 261-272.
[9] C. Sichel, J. Blanco, S. Malato, P. Fernández-Ibáñez, Effects of experimental condition on E. coli survival during solar photocatalytic water disinfection. J. Photochem. Photobiol. A: Chem. 189 (2007) 239-246.
[10] K.P. Kühn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003) 71-77.
[11] G.G. Hancock, E.M. Davis, Regrowth potential of coliforms after UV disinfection of municipal wastewater, J. Environ. Sci. Health., Part A 34 (1999) 1737-1743.
[12] R.J. Watt, S.H. Kong, M.P. Orr, G.C. Miller, B.E. Herny, Photocatalytic inactivation of coliform bacteria and virused in secondary wastewater effluent. Water Res. 29 (1995) 95-100.
[13] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photo-electrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29 (1985) 211-214.
[14] P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin, Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide, Appl. Catal. B: Environ. 41 (2003) 371-386.
[15] P.S.M. Dunlop, M. Ciavola, L. Rizzo, J. A. Byrne, Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags, Chemosphere 85 (2011) 1160-1166.
[16] A.S. Gong, C.A. Lanzl, D.M. Cwiertny, S.L. Walker, Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coil, Environ. Sci. Technol. 46 (2012) 241-249.
DOI: 10.1021/es202541r
[17] I. Tatlidil, M. Sokmen, C. Breen, F. Clegg, C.K. Buruk, E. Bacaksiz, Degradation of Candida albicans on TiO2 and Ag-TiO2 thin films prepared by sol-gel and nanosuspensions, J. Sol-Gel. Sci. Technol. 60 (2011) 23-32.
[18] K.P. Kühn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003)71-77.
[19] J.A.H. Melián, J.M.D. Rodríguez, A.V. Suárez, E.T. Rendón, C.V. Campo, J. Arana, J.P. Peña, The photocatalytic disinfection of urban waste waters, Chemosphere 41 (2000) 323-327.
[20] T. Saito, T. Iwase, J. Horie, T. Morioka, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B: Biol. 14 (1992) 369-379.
[21] B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere 52 (2003) 277-281.
[22] R.J. Watts, S. Kong, M.P. Orr, G.C. Miller, B.E. Henry, Photocatalytic inactivation of coliform bacteria and viruses in secondary waste water effluent, Water Res. 29 (1995) 95-100.
[23] M. Cho, J. Yoon, Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems, J. Appl. Microbiol. 104 (2008) 759-766.
[24] H. Ryu, D. Gerrity, J.C. Crittenden, M. Abbaszadegan, Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation, Water Res. 42 (2008) 1523-1530.
[25] S. Navalon, M. Alvaro, H. Garcia, D. Escrig, V. Costa, Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst, Water Sci. Technol. 59 (2009) 639-645.
DOI: 10.2166/wst.2009.016
[26] D.F. Ollis, Contaminant degradation in water, Environ. Sci. Technol. 19 (1985) 480-484.
[27] W.J. Wang, L.S. Zhang, T.C. An, G.Y. Li, H.Y. Yip, P.K. Wong, Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-codoped TiO2 microspheres: the role of different reactive species, Appl. Catal. B: Environ. 108-109 (2011).
[28] G. Gottschalk, Biosynthesis of Escherichia coli cells from glucose, in: M.P. Starr (Ed. ), Bacterial Metabolism, Springer-Verlag, New York, NY, 1979, pp.34-80.
[29] Y.M. Chen, A.H. Lu, Y. Li, L.S. Zhang, H.Y. Yip, H.J. Zhao, T.C. An, P.K. Wong, Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 45 (2011) 5689-5695.
DOI: 10.1021/es200778p
[30] O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal. B: Environ. 98 (2010) 27-38.
[31] D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods 28 (1999) 1-50.
[32] C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed. 33 (2007) 359-375.
[33] H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol. 90 (2011) 1847-1868.
[34] A. Markowska-Szczupak, K. Ulfig, A.W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: an overview, Catal. Today 169 (2011) 249-257.
[35] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997-3027.
[36] J.C. Ireland, P.K. lostermann, E.W. Rice, R.M. Clark, Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbiol. 59 (1993) 1668-1670.
[37] P. Zhang, R.J. Scrudato, G. Germano, Solarcatalytic inactivation of Escherichia coli in aqueous solutions using TiO2 as catalyst, Chemosphere 28 (1994) 607-611.
[38] H.N. Pham, T. McDowell, E. Wilkins, Photocatalytically‐mediated disinfection of water using TiO2 as a catalyst and spore‐forming Bacillus pumilus as a model, J. Environ. Sci. Health A: Environ. Sci. Eng. 30 (1995) 627-636.
[39] Y.W. Cheng, R.C.Y. Chan, P.K. Wong, Disinfection of Legionella pneumophila by photocatalytic oxidation, Water Res. 41 (2007) 842-852.
[40] T.Y. Leung, C.Y. Chan, C. Hu, J.C. Yu, P.K. Wong, Photocatalytic disinfection of marine bacteria using fluorescent light, Water Res. 42 (2008) 4827-4837.
[41] O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust, J. Photochem. Photobiol. A: Chem. 165 (2004) 103-107.
[42] F. Méndez-Hermida, E. Ares-Mazás, K.G. McGuigan, M. Boyle, C. Sichel, P. Fernández-Ibáñez, Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2, J. Photochem. Photobiol. B: Biol. 88 (2007).
[43] L.R. Quisenberry, L.H. Loetscher, J.E. Boyd, Catalytic inactivation of bacteria using Pd-modified titania, Catal. Commun. 10 (2009) 1417-1422.
[44] E.A. Kozlova, A.S. Safatov, S.A. Kiselev, V.Y. Marchenko, A.A. Sergeev, M.O. Skarnovich, E.K. Emelyanova, M.A. Smetannikova, G.A. Buryak, A.V. Vorontsov, Inactivation and Mineralization of Aerosol Deposited Model Pathogenic Microorganisms over TiO2 and Pt/TiO2, Environ. Sci. Technol. 44 (2010).
DOI: 10.1021/es100156p
[45] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity, Biomaterials, 23 (2002) 887-892.
[46] W.L. Chou, D.G. Yu, M.C. Yang, The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment, Polymer. Adv. Tech. 16 (2005) 600-607.
DOI: 10.1002/pat.630
[47] T. Yuranova, A.G. Rincon, C. Pulgarin, D. Laub, N. Xantopoulos, H.J. Mathieu, J. Kiwi, Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli, J. Photochem. Photobiol. A: Chem. 181 (2006).
[48] A. Kabacka, M. Ferrer, A. Martínez-Arias, M. Fernández-García, Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation, Appl. Catal. B: Environ. 84 (2008) 87-93.
[49] Y. Liu, X.L. Wang, F.G. Yang, X.R. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mat. 114 (2008) 431-439.
[50] K.D. Kim, D.N. Han, J.B. Lee, H.T. Kim, Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method, Scripta Mater. 54 (2006) 143-146.
[51] C.A. Castro, A. Jurado, D. Sissa, S.A. Giraldo, Performance of Ag-TiO2 photocatalysts towards the photocatalytic disinfection of water under interior-lighting and solar-simulated light irradiations, Int. J. Photoenergy (2012) 261045.
DOI: 10.1155/2012/261045
[52] R.V. Kumar, G. Raza, Photocatalytic disinfection of water with Ag-TiO2 nanocrystalline composite, Ionics 15 (2009) 579-587.
[53] S.Y. Ye, M.L. Fan, X.L. Song, S.C. Luo, Enhanced photocatalytic disinfection of P. expansum in cold storage using a TiO2/ACF film, Int. J. Food Microbiol. 136 (2010) 332-339.
[54] M.V. Liga, E.L. Bryant, V.L. Colvin, Q.L. Li, Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment, Water Res. 45 (2011) 535-544.
[55] M.I. Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Appl. Catal. B: Environ. 23 (1999) 89-114.
[56] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci. 352 (2010), 68-74.
[57] C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd–TiO2, Catal. Commun. 12 (2011) 826-829.
[58] J.C. Yu, W.K. Ho, J. Lin, H.Y. Yip, P.K. Wong, Photocatalytic Activity, Antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol. 37 (2003) 2296-2301.
DOI: 10.1021/es0259483
[59] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
[60] Z. Zhao, Q. Liu, Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation, J. Phys. D: Appl. Phys. 41(2008) 025105.
[61] Q. Li, R. Xie, Y.W. Li, E.A. Mintz, J.K. Shang, Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide, Environ. Sci. Technol. 41 (2007) 5050-5056.
DOI: 10.1021/es062753c
[62] P. Wu, R. Xie, J.K. Shang, Enhanced visible-light photocatalytic disinfection of bacterial spores by palladium-modified nitrogen-doped titanium oxide, J. Am. Ceram. Soc. 91 (2008) 2957-2962.
[63] Q. Li, Y.W. Li, P. Wu, R. Xie, J.K. Shang, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic memory, Adv. Mater. 20 (2008) 3717-3723.
[64] Q. Li, P. Wu, R. Xie, J.K. Shang, Enhanced photocatalytic disinfection of microorganisms by transition-metal-ion-modification of nitrogen-doped titanium oxide, J. Mater. Res. 25 (2010) 167-176.
[65] J.C. Yu, W.K. Ho, J.G. Yu, H. Yip, P.K. Wong, J.C. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.
DOI: 10.1021/es035374h
[66] J.A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N.C. Castillo, J. Kiwi, C. Pulgarin, Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B: Environ. 84 (2008) 448-456.
[67] A.K. Jana, Solar cells based on dyes, J. Photochem. Photobiol. A: Chem. 132 (2000) 1-17.
[68] Z.L. Jin, X.J. Zhang, G.X. Lu, S.B. Li, Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2—Investigation of different noble metal loading, J. Mol. Catal. A: Chem. 259 (2006).
[69] F.H. Hussein, A.N. Alkhateeb, Photo-oxidation of benzyl alcohol under natural weathering conditions, Desalination, 209 (2007) 350-355.
[70] Z.L. Jin, X.J. Zhang, Y.X. Li, S.B. Li, G.X. Lu, 5. 1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation, Catal. Commun. 8 (2007) 1267-1273.
[71] K.S. Yao, T.C. Cheng, S.J. Li, L.Y. Yang, K.C. Tzeng, C.Y. Chang, Y. Ko, Comparison of photocatalytic activities of various dye-modified TiO2 thin films under visible light, Surf. Coat. Technol. 203 (2008) 922-924.
[72] K. Hashimoto, M. Hiramoto, T. Kajiwara, T. Sakata, Luminescence decays and spectra of Ru(bpy)32+ adsorbed on titania in vacuo and in the presence of water vapor, J. Phys. Chem. 92 (1988) 4636-4640.
DOI: 10.1021/j100327a015
[73] K.S. Yao, D.Y. Wang, C.Y. Chang, W.Y. Ho, L.Y. Yang, Characteristics and photocatalytic activity of TiO2 thin film sensitized with a porphyrin dye, J. Nanosci. Nanotechnol. 8 (2008) 2699-2702.
DOI: 10.1166/jnn.2008.495
[74] K.S. Yao, D.Y. Wang, C.Y. Chang, K.W. Weng, L.Y. Yang, S.J. Lee, T.C. Cheng, C.C. Hwang, Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO2 thin film activated by visible light, Surf. Coat. Technol. 202 (2007).
[75] R.A. Doong, C.H. Chen, R.A. Maithreepala, S.M. Chang, The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions, Water Res. 35 (2001) 2873-2880.
[76] N. Laot, N. Narkis, I. Neeman, D. Bilanovic, R. Armon, TiO2 photocatalytic inactivation of selected microorganisms under various conditions: sunlight, intermittent and variable irradiation intensity, CdS augmentation and entrapment of TiO2 into sol-gel, J. Adv. Oxid. Technol. 4 (1999).
[77] V. Keller, F. Garin, Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase, Catal. Commun. 4 (2003) 377-383.
[78] G.L. Zhao, H. Kozuka, T. Yoko, Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles, Thin Solid Films, 277 (1996) 147-154.
[79] E. Bae, W. Choi, Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light, Environ. Sci. Technol. 37 (2003) 147-152.
DOI: 10.1021/es025617q
[80] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc. 130 (2008) 1676-1680.
DOI: 10.1021/ja076503n
[81] C. Hu, Y.Q. Lan, J.H. Qu, X.X. Hu, A.M. Wang, Ag/AgBr/TiO2 Visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.
DOI: 10.1021/jp0564400
[82] Y.Q. Lan, C. Hu, X.X. Hu, J.H. Qu, Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B: Environ. 73 (2007) 354-360.
[83] M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria, J. Am. Chem. Soc. 129 (2007) 9552-9553.
DOI: 10.1021/ja072492m
[84] C. Hu, J. Guo, J.H. Qu, X. X. Hu, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir 23 (2007) 4982-4987.
DOI: 10.1021/la063626x
[85] K. Chockalingam, A. Ganapathy, G. Paramasivan, M. Govindasamy, A. Viswanathan, NiO/TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Am. Ceram. Soc. 94 (2011), 2499-2505.
[86] O. Akhavan1, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, J. Phys. D: Appl. Phys. 42 (2009) 225305.
[87] K. Page, M. Wilson, N.J. Mordan, W. Chrzanowski, J. Knowles, I.P. Parkin, Study of the adhesion of Staphylococcus aureus to coated glass substrates, J. Mater. Sci. 46 (2011) 6355-6363.
[88] J. Alarcón, S. Ponce, F. Paraguay-Delgado, J. Rodríguez, Effect of γ-irradiation on the growth of ZnO nanorod films for photocatalytic disinfection of contaminated water, J. Colloid Interf. Sci. 364 (2011) 49-55.
[89] J. Rodríguez, F. Paraguay-Delgado, A. López, J. Alarcón, W. Estrada, Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water, Thin Solid Films 519 (2010) 729-735.
[90] M.A. Gondal, A. Khalil, Rapid disinfection of E-Coliform contaminated water using WO3 semiconductor catalyst by laser-induced photocatalytic process, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 43 (2008) 488-494.
[91] H.T. Yu, X. Quan, Y.B. Zhang, N. Ma, S. Chen, H.M. Zhao, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir 24 (2008) 7599-7604.
[92] I.M. Butterfield, P.A. Christensen, T.P. Curtis, J. Gunlazuardi, Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement, Water Res. 31 (1997) 675-677.
[93] P.S.M. Dunlop, J.A. Byrne, N. Manga, B.R. Eggins, The photocatalytic removal of bacterial pollutants from drinking water, J. Photochem. Photobiol. A: Chem. 148 (2002) 355-363.
[94] W.W. Wilson, M.M. Wade, S.C. Holman, F.R. Champlin, Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements, J. Microbiol. Methods, 43 (2001) 153-164.
[95] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999).
[96] J.A. Seabold, K.S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, J. Am. Chem. Soc. 134 (2012) 2186-2192.
DOI: 10.1021/ja209001d
[97] A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 28 (1999) 1103-1104.
DOI: 10.1246/cl.1999.1103
[98] C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater. 17 (2005) 3537-3545.
DOI: 10.1021/cm0501517
[99] A. Martínez-de la Cruz, S.O. Alfaro, E.L. Cuéllar, U.O. Méndez, Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor, Catal. Today, 129 (2007) 194-199.
[100] J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem. Int. Ed. 43 (2004) 4463-4466.
[101] M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region, J. Chem. Phys. 117 (2002) 7313-7318.
DOI: 10.1063/1.1507101
[102] X.X. Hu, C. Hu, J.H. Qu, Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation, Appl. Catal. B: Environ. 69 (2006) 17-23.
[103] C. Hu, X.X. Hu, J. Guo, J.H. Qu, Efficient destruction of pathogenic bacteria with NiO/SrBi2O4 under visible light irradiation, Environ. Sci. Technol. 40 (2006) 5508-5513.
DOI: 10.1021/es052405v
[104] J. Ren, W. Wang, L. Zhang, J. Chang, S. Hu, Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light, Catal. Commun. 10 (2009) 1940-(1943).
[105] L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr−Ag−Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol. 44 (2010).
DOI: 10.1021/es903087w
[106] L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components, Appl. Catal. A: Gen. 363 (2009) 221-229.
[107] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.
DOI: 10.1038/nature04233
[108] S. Latil, L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97 (2006) 036803.
[109] M.Y. Han, B. Oezyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98 (2007) 206805.
[110] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.
[111] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[112] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nature Mater. 6 (2007) 183-191.
[113] J. Wu, W. Pisula, K. Müllen. Graphenes as potential material for electronics, Chem. Rev. 107 (2007) 718-747.
DOI: 10.1021/cr068010r
[114] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48 (2009) 7752-7777.
[115] M.J. Allen, V.C. Tung, R.B. Kaner. Honeycomb carbon: a review of graphene, Chem. Rev. 110 (2010) 132-145.
DOI: 10.1021/cr900070d
[116] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: an historial account of graphene and some perspectives for its future, Angew. Chem. Int. Ed. 49 (2010) 9336-9345.
[117] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J. R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.
[118] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for garbon-based materials, Small 6 (2010) 711-723.
[119] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10 (2010) 577-583.
DOI: 10.1021/nl9035109
[120] G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano 2 (2008) 1487-1491.
DOI: 10.1021/nn800251f
[121] O.V. Prezhdo, P.V. Kamat, G.C. Schatz, Virtual issue: graphene and functionalized graphene, J. Phys. Chem. C 115 (2011) 3195-3197.
DOI: 10.1021/jp200538f
[122] P.V. Kamat, Graphene-based nanoassemblies for energy conversion, J. Phys. Chem. Lett. 2 (2011) 242-251.
[123] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.
DOI: 10.1039/c1cs15172j
[124] X. An, J.C. Yu, Graphene-based photocatalytic composites, RSC Adv. 1 (2011) 1426-1434.
[125] O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C, 113 (2009) 20214-20220.
DOI: 10.1021/jp906325q
[126] O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation, J. Phys. Chem. B 115 (2011) 6279-6288.
DOI: 10.1021/jp200686k
[127] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41 (2008) 1578-1586.
DOI: 10.1021/ar7002804
[128] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nature Mater. 9 (2010) 193-204.
DOI: 10.1038/nmat2630
[129] D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133 (2011) 5202-5205.
DOI: 10.1021/ja200086g
[130] C.G. Silva, R. Juárez, T. Marino, R. Molinari, H. García, Infuence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133 (2011).
DOI: 10.1021/ja1086358
[131] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Mater. 10 (2011) 911-921.
DOI: 10.1038/nmat3151
[132] P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Ag/AgBr/WO3·H2O: Visible-light photocatalyst for bacteria destruction, Inorg. Chem. 48 (2009) 10697-10702.
DOI: 10.1021/ic9014652
[133] X.X. Hu, C. Hu, T.W. Peng, X.F. Zhou, J.H. Qu, Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag−AgI/Al2O3 under visible-light irradiation, Environ. Sci. Technol. 44 (2010) 7058-7062.
DOI: 10.1021/es1012577
[134] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO, Mater. Sci. Semicond. Process. 14 (2011) 133-138.
[135] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO, Solid State Sci. 13 (2011) 923-928.
[136] P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, J. Hao, Y. Dai, Z.Y. Wang, J.Y. Wei, J. Zhan, S.Y. Wang, J.P. Wang, M.H. Whangbo, Highly efficient visible-light plasmonic photocatalyst Ag@AgBr, Chem. Eur. J. 15 (2009) 1821-1824.
[137] C.H. An, R.P. Wang, S.T. Wang, X.Y. Zhang, Converting AgCl nanocubes to sunlight-driven plasmonic AgCl: Ag nanophotocatalyst with high activity and durability, J. Mater. Chem. 21 (2011) 11532–11536.
DOI: 10.1039/c1jm10244c
[138] H. Zhu, X. Ke, X. Yang, S. Sarina, H. Liu, Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet ligh, Angew. Chemie. Int. Ed. 49 (2010) 9657-9661.
[139] S. Navalon, M. de Miguel, R. Martin, M. Alvaro, H. Garcia, Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light, J. Am. Chem. Soc. 133 (2011) 2218-2226.
DOI: 10.1021/ja108816p
[140] P. Christopher, H. Xin, S. Linic, Visible light enhanced catalytic oxidation reactions on plasmonic Ag nanostructures, Nature Chem. 3 (2011) 467-472.
DOI: 10.1038/nchem.1032
[141] X. Chen, H.Y. Zhu, J.C. Zhao, Z.F. Zheng, X. P. Gao, Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chemie. Int. Ed. 47 (2008) 5353-5356.
[142] H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible irradiation, Chem. Commun, (2010) 7524-7526.
DOI: 10.1039/b917052a
[143] X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, H. Zhu, Supported silver particles as photocatalysts under ultraviolet and visible light irradiation, Green Chem. 12 (2010) 414-419.
DOI: 10.1039/b921696k
[144] Y. Li, A.H. Lu, C.Q. Wang, Semiconducting mineralogical characteristics of natural sphalerite gestating visible-light photocatalysis, Acta Geol. Sin 83 (2009) 633-639.
[145] Y. Li, A.H. Lu, C.Q. Wang, Photocatalytic reduction of Cr(VI) by natural sphalerite suspensions under visible light irradiation, Acta Geol. Sin 80 (2006) 267-272.
[146] Y. Li, A.H. Lu, C.Q. Wang, X.L. Wu, Characterization of natural sphalerite as a novel visible-light-driven photocatalyst, Solar Energy Mater. Solar Cells 92 (2008) 953-959.
[147] Y. Li, A.H. Lu, S. Jin, C.Q. Wang, Photo-reductive decolorization of an azo dye by natural sphalerite: case study of a new type of visible light-sensitized photocatalyst, J. Hazard. Mater. 170 (2009) 479-486.
[148] M. Paulose, L. Peng, K.C. Popat, O.K. Varghese, T.J. LaTempa, N. Bao, T.A. Desai, C.A. Grimes, Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes, J. Membr. Sci. 319 (2008) 199-205.
[149] X.W. Zhang, T. Zhang, J. Ng, D.D. Sun, High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment. Adv. Funct. Mater. 19 (2009) 3731-3736.
[150] L. Liu, Z. Liu, H. Bai, D.D. Sun, Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane, Water Res. 46 (2012) 1101-1112.
[151] M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes, Nature Commun. 3 (2012).
DOI: 10.1038/ncomms1661