Electron Paramagnetic Resonance Studies of Nb in 6H-SiC

Article Preview

Abstract:

Defects in unintentionally Nb-doped 6H-SiC grown by high-temperature chemical vapor deposition were studied by electron paramagnetic resonance (EPR). An EPR spectrum with a hyperfine (hf) structure consisting of ten equal-intensity lines was observed. The hf structure is identified to be due to the hf interaction between an electron spin S=1/2 and a nuclear spin of 93Nb. The hf interaction due to the interaction three nearest Si neighbors was also observed, suggesting the involvement of the C vacancy (VC) in the defect. Only one EPR spectrum was observed in 6H-SiC polytype. The obtained spin-Hamiltonian parameters are similar to that of the Nb-related EPR defect in 4H-SiC, suggesting that the EPR center in 6H-SiC is the NbSiVC complex in the neutral charge state, NbSiVC0. Photoexcitation EPR experiments suggest that the single negative charge state of the NbSiVC complex is located at ~1.3 eV below the conduction band minimum.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

385-388

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. W. J. Choyke and L. Patrick, Silicon Carbide l973 (University of South Carolina Press, Columbia, 1974), p.261

Google Scholar

[2] A.W.C. Van Kemenade and S. H. Hagen, Solid State Commun. 14 (1974) 1331.

Google Scholar

[3] K.M. Lee, Le Si Dang, G.D. Watkins, and W.J. Choyke, Phys. Rev. B 32 (1985) 2273.

Google Scholar

[4] J. Schneider, A. Dörnen, S. Leibenzeder, and R. Stein, Appl. Phys. Lett. 56 (1990) 1184.

Google Scholar

[5] M. Kunzer, H. D. Müller, and U. Kaufmann, Phys. Rev. B 48 (1993) 10846.

Google Scholar

[6] J. Baur, M. Kunzer, and J. Schneider, Phys. Stat. Sol. (a) 162 (1997) 153.

Google Scholar

[7] P.G. Baranov, V.A. Khramtsov, and E.N. Mokhov, Semicond. Sci. Technol. 9 (1994) 1340

Google Scholar

[8] N.T. Son, A. Ellison, B. Magnusson, M.F. MacMillan, W.M. Chen, B. Monemar, and E. Janzén, J. Appl. Phys. 86 (1999) 4348

Google Scholar

[9] P. G. Baranov and E. N. Mokhov, Soviet Phys. Solid State 38, (1996) 798

Google Scholar

[10] P. G. Baranov, I.V. Ilyn, E. N. Mokhov, and V.A. Khramtsov, Mater. Sci. Forum 529 (2001) 353-356

Google Scholar

[11] K. Irmscher, I. Pintilie, L. Pintilie, D. Schulz, Physica B 730 (2001) 308-310.

DOI: 10.1016/s0921-4526(01)00887-0

Google Scholar

[12] J. Baur, M. Kunzer, K. F. Dombrowski, U. Kaufmann, J. Schneider, P. G. Baranov, and E. N. Mokhov, Inst. Phys. Conf. Ser. 155 (1997) 933.

Google Scholar

[13] L. V. C. Assali, W. V. M. Machado, and J. F. Justo, Appl. Phys. Lett. 89 (2006) 072102.

Google Scholar

[14] V. Ivády, A. Gällström, N. T. Son, E. Janzén, and A. Gali, Phys. Rev. Lett. 107 (2011) 195501.

Google Scholar

[15] N.T. Son, V. Ivády, A. Gali, A. Gällström, S. Leone, O. Kordina, and E. Janzén, Mater. Sci. Forum 717-720 (2012) 217.

DOI: 10.4028/www.scientific.net/msf.717-720.217

Google Scholar

[16] N.T. Son, B. Magnusson, Z. Zolnai, A. Ellison, and E. Janzén, Mater. Sci. Forum 457-460 (2004) 437.

DOI: 10.4028/www.scientific.net/msf.457-460.437

Google Scholar

[17] A. Gällström, I.G. Ivanov, S. Leone, B. Magnusson, O. Kordina, N.T. Son, A. Henry, V. Ivády, A. Gali, and E. Janzén: submitted to Physical Review B (2012). See also I.G. Ivanov, A. Gällström, S. Leone, O. Kordina, N.T. Son, A. Henry, V. Ivády, A. Gali, and E. Janzén, this conference.

DOI: 10.4028/www.scientific.net/msf.740-742.405

Google Scholar