[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
Google Scholar
[2]
T. Surek, Crystal growth and materials research in photovoltaics: progress and challenges, Journal of Crystal Growth 275 (2005) 292-304.
DOI: 10.1016/j.jcrysgro.2004.10.093
Google Scholar
[3]
S. Pizzini, Towards solar grade silicon: Challenges and benefits for low cost photovoltaics, Solar Energy Materials and Solar Cells 94 (2010) 1528-1533.
DOI: 10.1016/j.solmat.2010.01.016
Google Scholar
[4]
S. Pizzini, C. Calligarich, On the effect of impurities on the photovoltaic behavior of solar grade silicon, Journal of The Electrochemical Society 131 (1984) 2128-2132.
DOI: 10.1149/1.2116033
Google Scholar
[5]
N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, F. Aratani, Purification of metallurgical-grade silicon up to solar grade, Progress in Photovoltaics: Research and Applications 9 (2001) 203-209.
DOI: 10.1002/pip.372
Google Scholar
[6]
C.P. Khattak, D.B. Joyce, F. Schmid, A simple process to remove boron from metallurgical grade silicon, Solar Energy Materials and Solar Cells 74 (2002) 77-89.
DOI: 10.1016/s0927-0248(02)00051-x
Google Scholar
[7]
G. Flamant, V. Kurtcuoglu, J. Murray, A. Steinfeld, Purification of metallurgical grade silicon by a solar process, Solar Energy Materials and Solar Cells 90 (2006) 2099-2106.
DOI: 10.1016/j.solmat.2006.02.009
Google Scholar
[8]
J. Degoulange, I. Périchaud, C. Trassya, S. Martinuzzi, Multicrystalline silicon wafers prepared from upgraded metallurgical feedstock, Solar Energy Materials and Solar Cells 92 (2008) 1269-1273.
DOI: 10.1016/j.solmat.2008.04.020
Google Scholar
[9]
T. Liu, Z. Dong, Y. Zhao, J. Wang, T. Chen, H. Xie, J. Li, H. Ni, D. Huo, Large scale purification of metallurgical silicon for solar cell by using electron beam melting, Journal of Crystal Growth 351 (2012) 19-22.
DOI: 10.1016/j.jcrysgro.2012.04.023
Google Scholar
[10]
B. Lim, M. Wolf, J. Schmidt, Carrier mobilities in multicrystalline silicon wafers made from UMG-Si, Physica Status Solidi C 8 (2011) 835-838.
DOI: 10.1002/pssc.201000144
Google Scholar
[11]
V. Osinniy, P. Bomholt, A.N. Larsen, E. Enebakk, A. -K. Søiland, R. Tronstad, Y. Safir, Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route, Solar Energy Materials and Solar Cells 95 (2011).
DOI: 10.1016/j.solmat.2010.09.017
Google Scholar
[12]
C. Alemany, C. Trassy, B. Pateyron, K.I. Li, Y. Delannoy, Refining of metallurgical-grade silicon by inductive plasma, Solar Energy Materials and Solar Cells 72 (2002) 41-48.
DOI: 10.1016/s0927-0248(01)00148-9
Google Scholar
[13]
Y. Delannoy, C. Alemany, K. -I. Li, P. Proulx, C. Trassy, Plasma-refining process to provide solar-grade silicon, Solar Energy Materials and Solar Cells 72 (2002) 69-75.
DOI: 10.1016/s0927-0248(01)00151-9
Google Scholar
[14]
A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M. G. Bacchin, P.R. Mei, New processes for the production of solar-grade polycrystalline silicon: a review, Solar Energy Materials and Solar Cells 92 (2007) 418-424.
DOI: 10.1016/j.solmat.2007.10.003
Google Scholar
[15]
C. Modanese, M.D. Sabatino, A. -K. Søiland, K. Peter, L. Arnberg, Investigation of bulk and solar cell properties of ingots cast from compensated solar grade silicon, Progress in Photovoltaics: Research and Applications 19 (2011) 45-53.
DOI: 10.1002/pip.986
Google Scholar
[16]
D. Macdonald, A. Cuevas, Recombination in compensated crystalline silicon for solar cells, Journal of Applied Physics 109 (2011) 043704-1–043704-8.
DOI: 10.1063/1.3555588
Google Scholar
[17]
J. Schmidt, A.G. Aberle, R. Herzel, Investigation of carrier lifetime instabilities in Cz-grown silicon, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, IEEE, New York, 1997, pp.13-18.
DOI: 10.1109/pvsc.1997.653914
Google Scholar