Recent Developments of ZnO-Based P-Type Transparent Conductive Oxide Thin Films

Article Preview

Abstract:

Nowadays, high performance p-type transparent conductive oxide (TCO) thin films have gained tremendous intersts, and the fact is that if p-type TCOs with high electrical conductivity and optical transmittance can be fabricated, transparent p-n junctions can be obtained and invisible electronics be realized, and hence the use area of TCOs will be highly broadened. A lot of work have been done on non-stoichiometric and doped versions of p-type TCOs in the last few years to improve the optical and electrical properties by various deposition techniques. ZnO-based thin films were thought to be the most promising candidate for p-type TCOs based on the fact that ZnO has advantages over the others, so in this paper the development of ZnO-based p-type TCOs has been discussed. Firstly, the reasons why p-type ZnO-based TCOs are difficult to synthesize were discussed, and then the general ways now used to produce p-type ZnO-based TCOs were summerized, including intrinsic p-type ZnO, doping of groupelements, codoping of and elements, doping of group elements, the origin of p-type conductivity and the feasibility of each way, and the state-of-the-art optical and electrical properties were presented. Finally, the specific shortcomings in producing high quality p-type TCOs were discussed. Based on the comparision, it is believed that the doping of groupelements in ZnO may be the most pronising way in realizing p-type TCO.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

878-885

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Ye, S.L. Gu, S.M.W. Zhu, S.M. Liu, R. Zhang, Y. Shi and Y.D. Zheng, Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions, Appl. Phys. Lett. 88 (2006) 182112-1-3.

DOI: 10.1063/1.2201895

Google Scholar

[2] C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films 411 (2002) 1-5.

DOI: 10.1016/s0040-6090(02)00163-3

Google Scholar

[3] S. Fraga, J. Karwowski and K.M.S. Saxena, Handbook of atomic data, first ed., Elsevier, Amsterdam, (1976).

Google Scholar

[4] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature 389 (1997) 939-942.

DOI: 10.1038/40087

Google Scholar

[5] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe and H. Hosono, Transparent p-type semiconductor: LaCuOS layered oxysulfide, Appl. Phys. Lett. 77 (2000) 2701-2703.

DOI: 10.1063/1.1319507

Google Scholar

[6] H. Kamioka, H. Hidenori, H. Ohta, M. Hirano, K. Ueda, et al., Third-order optical nonlinearity originating from roo-temperature exciton in layered compounds LaCuOS and LaCuOSe, Appl. Phys. Lett. 84 (2004) 879-881.

DOI: 10.1063/1.1646221

Google Scholar

[7] R. Nagarajan, A.D. Draeseke, A.W. Sleight and J. Tate, P-type conductivity in CuCr1-XMgXO2 films and powders, J. Appl. Phys. 89 (2001) 8022-8025.

DOI: 10.1063/1.1372636

Google Scholar

[8] K. Ueda, T. Hase, H. Yanagi, H. Hosonno, et al., Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition, J. Appl. Phys. 89 (2001) 1790-1793.

DOI: 10.1063/1.1337587

Google Scholar

[9] H. Yanagi, T. Hase, S. Ibuki, K. Ueda and H. Hosono, Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure, Appl. Phys. Lett. 78 (2001) 1583-1585.

DOI: 10.1063/1.1355673

Google Scholar

[10] N. Duan, A.W. Sleight, M.K. Jayaraj and J. Tate, Transparent p-type conducting CuScO2+X films, Appl. Phys. Lett. 77 (2000) 1325-1326.

DOI: 10.1063/1.1289906

Google Scholar

[11] B.J. Ingram, B.J. Harder, N.W. Hrabe and T.O. Mason, Transparent and defect mechanisms in cuprous delafossites. 2. CuScO2 and CuYO2, Chem. Mater. 16 (2004) 5623-5629.

DOI: 10.1021/cm048982k

Google Scholar

[12] A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, SrCu2O2: a p-type conductive oxide with wide band gap, Appl. Phys. Lett. 73 (1998) 220-222.

DOI: 10.1063/1.121761

Google Scholar

[13] H. Sato, T. Minami, S. Takata and T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films 236 (1993) 27-31.

DOI: 10.1016/0040-6090(93)90636-4

Google Scholar

[14] X.L. Guo, H. Tabata and T. Kawai, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J. Cryst. Growth 223 (2001) 135-139.

DOI: 10.1016/s0022-0248(00)00952-0

Google Scholar

[15] K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim and S.J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Appl. Phys. Lett. 83 (2003) 63-65.

DOI: 10.1063/1.1591064

Google Scholar

[16] M. Joseph, H. Tabata, H. Saeki, K. Ueda and T. Kawai, Fabrication of the low-resistive p-type ZnO by codoping method, Phys. B 302-303 (2001) 140-148.

DOI: 10.1016/s0921-4526(01)00419-7

Google Scholar

[17] D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang and K. Nordlund, Evidence for native-defect donors in n-type ZnO, Phys. Rev. Lett. 95 (2005) 225502-1-3.

DOI: 10.1103/physrevlett.95.225502

Google Scholar

[18] S.B. Zhang, S.H. Wei and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B 63 (2001) 075205-1-7.

DOI: 10.1103/physrevb.63.075205

Google Scholar

[19] D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker and B.K. Meyer, Hydrogen: A relevant shallow donor in zinc oxide, Phys. Rev. Lett. 88 (2002) 045504-1-4.

DOI: 10.1103/physrevlett.88.045504

Google Scholar

[20] T. Yamamoto, Codoping for the fabrication of p-type ZnO, Thin Solid Films 420-421 (2002) 100-106.

DOI: 10.1016/s0040-6090(02)00655-7

Google Scholar

[21] T.V. Butkhuzi, A.V. Bureyev, A.N. Georgobiani, N.P. Kekelidze and T.G. Khulordava, Optical and electrical properties of radical beam gettering epitaxy grown n- and p-type ZnO single crystals, J. Cryst. Growth 117 (1992) 366-369.

DOI: 10.1016/0022-0248(92)90777-g

Google Scholar

[22] L.P. Dai, H. Deng, J.J. Chen and M. Wei, Realization of the intrinsic p-type ZnO thin film by SSCVD, Solid State Commun. 143 (2007) 3788-381.

DOI: 10.1016/j.ssc.2007.06.021

Google Scholar

[23] S. Choopun, R.W. Vispute, W. Noch, A. Balsamo and R.P. Sharma, T. Venkatesan, A. Iliadis and D.C. Look, Oxygen pressure-tuned epitaxy and optpelectronic properties of laser-deposited ZnO films on sapphire, Appl. Phys. Lett. 75 (1999) 3947-3949.

DOI: 10.1063/1.125503

Google Scholar

[24] T. Sekiguchi, K. Haga and K. Inaba, ZnO films grown under the oxygen-riched condition, J. Cryst. Growth 214 (2000) 68-71.

DOI: 10.1016/s0022-0248(00)00062-2

Google Scholar

[25] Y.J. Zeng, Z.Z. Ye, W.Z. Xu, L.L. Chen, D.Y. Li, L.P. Zhu, B.H. Zhao and Y.L. Hu, Realization of p-type ZnO films via monodoping of Li acceptor, J. Cryst. Growth 283 (2005) 180-184.

DOI: 10.1016/j.jcrysgro.2005.05.071

Google Scholar

[26] Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu et al., Dopant source choice for formation of p-type ZnO: Li acceptor, Appl. Phys. Lett. 88 (2006) 062107-1-3.

DOI: 10.1063/1.2172743

Google Scholar

[27] C.H. Park, S.B. Zhang and S.H. Wei, Origin of p-type doping difficulty in ZnO: the impurity perspective, Phys. Rev. B 66 (2002) 073202-1-3.

Google Scholar

[28] S.Y. Tsai, M.H. Hon and Y.M. Lu, Annealing effect on conductivity behavior of Li-doped ZnO thin films and its application as ZnO-based homojunction device, J. Cryst. Growth 326 (2011) 85-89.

DOI: 10.1016/j.jcrysgro.2011.01.058

Google Scholar

[29] H.B. Liu, X.H. Pan, P. Ding, Z.Z. Ye and J.Y. Huang, Effects of diffusion temperature and diffusion time on fabrication of Na-diffused p-type ZnO thin films, Mater. Lett. (2012).

DOI: 10.1016/j.matlet.2012.04.092

Google Scholar

[30] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett. 81 (2001) 1830-1832.

DOI: 10.1063/1.1504875

Google Scholar

[31] W.W. Zhong, F.M. Liu, L.G. Cai, C.C. Zhou, P. Ding and H. Zhang, Annealing effects of co-doping with Al and Sb on structure and optical-electrical properties of the ZnO thin films, J. Alloys. Compd. 499 (2010) 265-268.

DOI: 10.1016/j.jallcom.2010.03.184

Google Scholar

[32] L. Balakrishnan, S. Gowrishankar, P. Premchander and N. Gopalakrishnan, Dual codoping for the fabrication of low resistive p-ZnO, J. Alloys Comp. 512 (2001) 235-240.

DOI: 10.1016/j.jallcom.2011.09.072

Google Scholar

[33] B. Yao, D.Z. Shen, Z.Z. Zhang, X.H. Wang, Z.P. Wei et al., Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering, J. Appl. Phys. 99 (2006) 123510-1-5.

DOI: 10.1063/1.2208414

Google Scholar

[34] X.F. Xu, Y.Q. Shen, N. Xu, W. Hu, J.S. Lai, Z.F. Ying and L.D. Wu, Large-sized-mismatched group-V element doped ZnO films fabricated on silicon substrates by pulsed laser deposition, Vaccum 84 (2010) 1306-1309.

DOI: 10.1016/j.vacuum.2010.02.008

Google Scholar

[35] C.H. Park, S.B. Zhang and S.H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B 66 (2002) 073202-1-3.

Google Scholar

[36] J.Z. Wang, V. Sallet, F. Jomard, A.M.B.D. Rego, E. Elamurugu, R. Martins and E. Fortunato, Influence of substrate temperature on N-doped ZnO films deposited by RF magnetron sputtering, Thin Solid Films 515 (2007) 8785-8788.

DOI: 10.1016/j.tsf.2007.03.061

Google Scholar

[37] N.H. Erdogan, K. Kara, H. Ozdamar, H. Kavak, R. Esen and H. Karaagac, Structural, optical and electrical properties of N-doped ZnO thin films prepared by thermal oxidation of pulsed filtered cathodic vacuum arc deposited ZnxNy films, J. Alloys Comp. 509 (2011).

DOI: 10.1016/j.jallcom.2011.06.048

Google Scholar

[38] Y. Sato, S. Sato, Preparation and some properties of nitrogen-mixed ZnO thin films, Thin Solid Films 282 (1996) 445-448.

DOI: 10.1016/0040-6090(96)08671-3

Google Scholar

[39] C.C. Lin, S.Y. Chen, S.Y. Cheng and H.Y. Lee, Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering, Appl. Phys. Lett. 84 (2004) 5040-5042.

DOI: 10.1063/1.1763640

Google Scholar

[40] Y.F. Yan, S.B. Zhang and S.T. Pantelides, Control of doping by impurity chemical potentials: predictions for p-type ZnO, Phys. Rev. Lett. 86 (2001) 5723-5726.

DOI: 10.1103/physrevlett.86.5723

Google Scholar

[41] K. Samanta, A.K. Arora, S. Hussain, S. Chakravarty and R.S. Katiyar, Effect of oxygen partial pressure and annealing on nanocrystalline p-type ZnO: Sb thin films, Curr. Appl. Phys. 12 (2012) 1381-1385.

DOI: 10.1016/j.cap.2012.04.001

Google Scholar

[42] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu and J.B. Cui, Preparation of Sb-doped ZnO nanostructures and studies on some of their properties, Physica E 41 (2008) 96-100.

DOI: 10.1016/j.physe.2008.06.018

Google Scholar

[43] S. Limpijumnong, S.B. Zhang, S.H. Wei and C.H. Park, Doping by large-size-mismtched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide, Phys. Rev. Lett. 92 (2004) 155504-1-4.

DOI: 10.1103/physrevlett.92.155504

Google Scholar

[44] U. Wahl, E. Rita, J. Correia, A. Marques, E. Alves and J. Soares, Direct evidence for As as a Zn-site impurity in ZnO, Phys. Rev. Lett. 95 (2005) 215503-1-4.

DOI: 10.1103/physrevlett.95.215503

Google Scholar

[45] T. Yang, B. Yao, T.T. Zhao, G.Z. Xing, H. Wang, H.L. Pan, R. Deng, Y.R. Sui, L.L. Gao, H.Z. Wang, T. Wu and D.Z. Shen, Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes, J. Alloys Comp. 509 (2011).

DOI: 10.1016/j.jallcom.2011.02.080

Google Scholar

[46] S.C. Su, X.D. Yang and C.D. Hu, Structural. Optical and electronic properties of P doped p-type ZnO thin film, Physica B 406 (2011) 1533-1535.

DOI: 10.1016/j.physb.2011.01.063

Google Scholar

[47] Z.W. Zhao, L.Z. Hu, H.Q. Zhang, J.C. Sun, J.M. Bian and J.Z. Zhao, Effect of different annealing temperature on Sb-doped ZnO thin films prepared by pulsed laser deposition on sapphire substrates, Appl. Surf. Sci. 257 (2011) 5121-5124.

DOI: 10.1016/j.apsusc.2011.01.037

Google Scholar