Microstructure Characterization of Si/C Multilayer Thin Films

Article Preview

Abstract:

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

910-914

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Green, Third generation photovoltaics: Untra-high conversion efficiency at low cost, Prog. Photovolt: Res. Appl. 9 (2001) 123-135.

DOI: 10.1002/pip.360

Google Scholar

[2] D. Timmerman, I. Izeddin, P. Stallinga, et al., Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications, Nature Photonics 2 (2008) 105-109.

DOI: 10.1038/nphoton.2007.279

Google Scholar

[3] G. Conibeer, M.A. Green, R. Corkish, et al., Silicon nanostructures for third generation photovoltaic solar cells, Thin solid films 511-512 (2006) 654-662.

DOI: 10.1016/j.tsf.2005.12.119

Google Scholar

[4] G.R. Chang, F. Ma, D.Y. Ma, et al., Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide, Nanotechnology 21 (2010) 465605-465613.

DOI: 10.1088/0957-4484/21/46/465605

Google Scholar

[5] G.F. Grom, D.J. Lockwood, J.P. McCaffrey, et al., Ordering and self-organization in nanocrystalline silicon, Nature 407 (2000) 358-361.

DOI: 10.1038/35030062

Google Scholar

[6] M. Zacharias, J. Heitmann, R. Scholz, et al., Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach, Appl. Phys. Lett. 80 (2002) 661-663.

DOI: 10.1063/1.1433906

Google Scholar

[7] N.M. Park, C.J. Choi, T.Y. Seong, et al., Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride, Phys. Rev. Lett. 86 (2001) 1355-1357.

DOI: 10.1103/physrevlett.86.1355

Google Scholar

[8] C.H. Cho, B.H. Kim, T.W. Kim, et al., Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film, Appl. Phys. Lett. 86 (2005) 143107.

DOI: 10.1063/1.1894595

Google Scholar

[9] D. Nesheva, C. Raptis, A. Perakis, et al., Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films, J. Appl. Phys. 92 (2002) 4678-4683.

DOI: 10.1063/1.1504176

Google Scholar

[10] A.C. Ferrari, J.C. Meyer, V. Scardaci, et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97 (2006) 187401.

Google Scholar

[11] A. Kassiba, M. Makowska-Janusik, J. Boucle, et al., Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles, Diam. Relat. Mater. 11 (2002) 1243-1247.

DOI: 10.1016/s0925-9635(02)00016-x

Google Scholar

[12] Md.N. Islam and Satyendra Kumar, Influence of crystallite size distribution on the micro-Raman analysis of porous Si, Appl. Phys. Lett. 78 (2001) 715-717.

DOI: 10.1063/1.1343494

Google Scholar