[1]
B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[2]
A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science. 334 (2011) 629-634.
DOI: 10.1126/science.1209688
Google Scholar
[3]
M. Liu, J. Yang, S. Feng, et al., Composite photoanodes of Zn2SnO4 nanoparticles modified SnO2 hierarchical microspheres for dye-sensitized solar cells, Materials Letters. 76 (2012) 215-218.
DOI: 10.1016/j.matlet.2012.02.110
Google Scholar
[4]
H. Zhu, J. Yang, S. Feng, et al., Growth of TiO2 nanosheet-array thin films by quick chemical bath deposition for dye-sensitized solar cells,Applied Physics A: Materials Science & Processing. 105 (2011) 769-774.
DOI: 10.1007/s00339-011-6513-y
Google Scholar
[5]
S. Feng, J. Yang, H. Zhu, et al., Synthesis of Single Crystalline Anatase TiO2 (001) Tetragonal Nanosheet-Array Films on Fluorine-Doped Tin Oxide Substrate, Journal of the American Ceramic Society. 94 (2011) 310-315.
DOI: 10.1111/j.1551-2916.2010.04266.x
Google Scholar
[6]
G.K. Mor, K. Shankar, M. Paulose, et al., Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Letters. 6 (2005) 215-218.
DOI: 10.1021/nl052099j
Google Scholar
[7]
D.B. Kuang, J. Brillet, et al., Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells, ACS Nano. 2 (2008) 1113-1116.
DOI: 10.1021/nn800174y
Google Scholar
[8]
K. Zhu, B.V. Todd, R.N. Nathan, et al., Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells, Nano Letters. 7 (2007) 3739-3746.
DOI: 10.1021/nl072145a
Google Scholar
[9]
O.K. Varghese, D.W. Gong, M. Paulose, et al., Hydrogen sensing using titania nanotubes, Sensors and Actuators B: Chemical. 93 (2003) 338-344.
DOI: 10.1016/s0925-4005(03)00222-3
Google Scholar
[10]
J.H. Park, S. Kim, A.J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Letters. 6 (2005) 24-28.
DOI: 10.1021/nl051807y
Google Scholar
[11]
G.K. Mor, K. Shankar, M. Paulose, et al., Enhanced Photocleavage of Water Using Titania Nanotube Arrays, Nano Letters. 5 (2004) 191-195.
DOI: 10.1021/nl048301k
Google Scholar
[12]
K.C. Popat, M. Eltgroth, T.J. Latempa, et al., Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials. 28 (2007) 4880-4888.
DOI: 10.1016/j.biomaterials.2007.07.037
Google Scholar
[13]
H. Imai, Y. Takei, K. Shimizu, et al., Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, Journal of Materials Chemistry. 9 (1999) 2971-2972.
DOI: 10.1039/a906005g
Google Scholar
[14]
T. Kasuga, M. Hiramatsu, A. Hoson, et al., Formation of Titanium Oxide Nanotube, Langmuir. 14 (1998) 3160-3163.
DOI: 10.1021/la9713816
Google Scholar
[15]
V.G. Pol, Y. Langzam, A. Zaban, Application of Microwave Superheating for the Synthesis of TiO2 Rods, Langmuir. 23 (2007) 11211-11216.
DOI: 10.1021/la7020116
Google Scholar
[16]
S. Li, G. Zhang, D. Guo, et al., Anodization Fabrication of Highly Ordered TiO2 Nanotubes, The Journal of Physical Chemistry C. 113 (2009) 12759-12765.
DOI: 10.1021/jp903037f
Google Scholar
[17]
D. Wang, Y. Bo, C. Wang, et al., A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes, Advanced Materials. 21(2009) 1964-(1967).
DOI: 10.1002/adma.200801996
Google Scholar
[18]
S. Ito, T.N. Murakami, P. Comte, et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films. 516 (2008) 4613-4619.
DOI: 10.1016/j.tsf.2007.05.090
Google Scholar
[19]
G.K. Mor, O.K. Varghese, et al., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells. 90 (2006) 2011-(2075).
DOI: 10.1016/j.solmat.2006.04.007
Google Scholar
[20]
J. Wang, Z. Lin, Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization, Chemistry of Materials. 20 (2008) 1257-1261.
DOI: 10.1021/cm7028917
Google Scholar
[21]
J.H. Lim, J. Choi, Titanium Oxide Nanowires Originating from Anodically Grown Nanotubes: The Bamboo-Splitting Model, Small. 3 (2007) 1504-1507.
DOI: 10.1002/smll.200700114
Google Scholar
[22]
H.E. Prakasam, K. Shankar, M. Paulose, et al., A New Benchmark for TiO2 Nanotube Array Growth by Anodization, The Journal of Physical Chemistry C. 111 (2007) 7235-7241.
DOI: 10.1021/jp070273h
Google Scholar
[23]
J. Wang, Z. Lin, Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering, Chemistry of Materials. 22 (2009) 579-584.
DOI: 10.1021/cm903164k
Google Scholar