Fabrication of TiO2 Nanotubes Array by Anodization for DSSC

Article Preview

Abstract:

TiO2 nanotubes array was fabricated by anodization. Effect of reaction duration on the morphology of TiO2 nanotube arrays was studied detailedly. The structure and morphology of the prepared nanotubes array was characterized by X-ray diffraction and scanning electron microscopy, respectively. The fabricated TiO2 arrays were peeled off and adhered to FTO glass with adhesive (mixture of tetrabutyl titanate and polyethylene glycol), then they were sintered at 450 for photoanode of DSSC. The photovoltaic performance of the prepared sample as the DSSC anode was investigated. An open circuit voltage of 0.69V and a short circuit current density of 7.78mA/cm2 were obtained, and the fill factor and the convert efficiency were 0.517 and 2.78%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

920-925

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science. 334 (2011) 629-634.

DOI: 10.1126/science.1209688

Google Scholar

[3] M. Liu, J. Yang, S. Feng, et al., Composite photoanodes of Zn2SnO4 nanoparticles modified SnO2 hierarchical microspheres for dye-sensitized solar cells, Materials Letters. 76 (2012) 215-218.

DOI: 10.1016/j.matlet.2012.02.110

Google Scholar

[4] H. Zhu, J. Yang, S. Feng, et al., Growth of TiO2 nanosheet-array thin films by quick chemical bath deposition for dye-sensitized solar cells,Applied Physics A: Materials Science & Processing. 105 (2011) 769-774.

DOI: 10.1007/s00339-011-6513-y

Google Scholar

[5] S. Feng, J. Yang, H. Zhu, et al., Synthesis of Single Crystalline Anatase TiO2 (001) Tetragonal Nanosheet-Array Films on Fluorine-Doped Tin Oxide Substrate, Journal of the American Ceramic Society. 94 (2011) 310-315.

DOI: 10.1111/j.1551-2916.2010.04266.x

Google Scholar

[6] G.K. Mor, K. Shankar, M. Paulose, et al., Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Letters. 6 (2005) 215-218.

DOI: 10.1021/nl052099j

Google Scholar

[7] D.B. Kuang, J. Brillet, et al., Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells, ACS Nano. 2 (2008) 1113-1116.

DOI: 10.1021/nn800174y

Google Scholar

[8] K. Zhu, B.V. Todd, R.N. Nathan, et al., Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells, Nano Letters. 7 (2007) 3739-3746.

DOI: 10.1021/nl072145a

Google Scholar

[9] O.K. Varghese, D.W. Gong, M. Paulose, et al., Hydrogen sensing using titania nanotubes, Sensors and Actuators B: Chemical. 93 (2003) 338-344.

DOI: 10.1016/s0925-4005(03)00222-3

Google Scholar

[10] J.H. Park, S. Kim, A.J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Letters. 6 (2005) 24-28.

DOI: 10.1021/nl051807y

Google Scholar

[11] G.K. Mor, K. Shankar, M. Paulose, et al., Enhanced Photocleavage of Water Using Titania Nanotube Arrays, Nano Letters. 5 (2004) 191-195.

DOI: 10.1021/nl048301k

Google Scholar

[12] K.C. Popat, M. Eltgroth, T.J. Latempa, et al., Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials. 28 (2007) 4880-4888.

DOI: 10.1016/j.biomaterials.2007.07.037

Google Scholar

[13] H. Imai, Y. Takei, K. Shimizu, et al., Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, Journal of Materials Chemistry. 9 (1999) 2971-2972.

DOI: 10.1039/a906005g

Google Scholar

[14] T. Kasuga, M. Hiramatsu, A. Hoson, et al., Formation of Titanium Oxide Nanotube, Langmuir. 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[15] V.G. Pol, Y. Langzam, A. Zaban, Application of Microwave Superheating for the Synthesis of TiO2 Rods, Langmuir. 23 (2007) 11211-11216.

DOI: 10.1021/la7020116

Google Scholar

[16] S. Li, G. Zhang, D. Guo, et al., Anodization Fabrication of Highly Ordered TiO2 Nanotubes, The Journal of Physical Chemistry C. 113 (2009) 12759-12765.

DOI: 10.1021/jp903037f

Google Scholar

[17] D. Wang, Y. Bo, C. Wang, et al., A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes, Advanced Materials. 21(2009) 1964-(1967).

DOI: 10.1002/adma.200801996

Google Scholar

[18] S. Ito, T.N. Murakami, P. Comte, et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films. 516 (2008) 4613-4619.

DOI: 10.1016/j.tsf.2007.05.090

Google Scholar

[19] G.K. Mor, O.K. Varghese, et al., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells. 90 (2006) 2011-(2075).

DOI: 10.1016/j.solmat.2006.04.007

Google Scholar

[20] J. Wang, Z. Lin, Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization, Chemistry of Materials. 20 (2008) 1257-1261.

DOI: 10.1021/cm7028917

Google Scholar

[21] J.H. Lim, J. Choi, Titanium Oxide Nanowires Originating from Anodically Grown Nanotubes: The Bamboo-Splitting Model, Small. 3 (2007) 1504-1507.

DOI: 10.1002/smll.200700114

Google Scholar

[22] H.E. Prakasam, K. Shankar, M. Paulose, et al., A New Benchmark for TiO2 Nanotube Array Growth by Anodization, The Journal of Physical Chemistry C. 111 (2007) 7235-7241.

DOI: 10.1021/jp070273h

Google Scholar

[23] J. Wang, Z. Lin, Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering, Chemistry of Materials. 22 (2009) 579-584.

DOI: 10.1021/cm903164k

Google Scholar