Synthesis and Characterization of Gold Nanoplates onto Solid Substrates by Seed-Mediated Growth Method

Article Preview

Abstract:

A simple technique of seed-mediated growth has successfully been performed to grow gold nanoplates onto solid substrates. The growth of gold nanoplates have been carried out attemperature of 28-30°C in the presence of a binary surfactant mixture: CTAB (cetyl trimethyl ammonium bromide) and PVP (poly-vinylpyrrolidone) with their various concentrations. Characterizations of the samples have been carried out by using UV-Vis spectroscopy, XRD and FESEM.UV-Vis spectra showed that the gold particles have grown with a various geometrical forms, such as spherical and others. XRD results informed that the presence of two peaks at 2θ: 38.195o and 44.393o indicated the gold nanoplates, with their crystal orientation of (111) and (200). FESEM images showed the edge-length size of nanoplates was dominated in the range of 11nm to 50 nm, with various morphologies of nanoplates, such as hexagonal,truncated hexagonal, triangular, square and spherical shapes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-118

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhang, J.; Oyama, M., Electrochim. Acta 2004, 50, 85

Google Scholar

[2] Zhang, J.; Oyama, M., Electroanal.Chem, 2005, 577, 273

Google Scholar

[3] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257

Google Scholar

[4] Kityk, I. V.; Ali Umar, A.; Oyama, M. Physica E 2005, 27, 420

Google Scholar

[5] Kityk, I. V.; Ali Umar, A.; Oyama, M. Physica E 2005, 28, 178

Google Scholar

[6] Tsuji, M; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Chem.-Eur. J. 2005, 11, 440

Google Scholar

[7] Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. Chem. Phys. Lett. 2000, 317, 517

Google Scholar

[8] Sun, X.; Dong, S.; Wang, E. Langmuir 2005, 21, 4710

Google Scholar

[9] Wang, L.; Chen, X.; Zhang, J.; Chai, Y.; Yang, C.; Xu, L.; Zhuang, W.; Jing, W. J. Phys. Chem. B 2005, 109, 3189

Google Scholar

[10] Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y. Chem. Mater. 1999, 11, 2310

Google Scholar

[11] Ibano, D.; Yokota, Y.; Tominaga, T. Chem. Lett. 2003, 32, 574

Google Scholar

[12] Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; Kotov, N. A.; Liz-Marzan, L. M. Langmuir 2002, 18, 3694

DOI: 10.1021/la025563y

Google Scholar

[13] Imura, K.; Nagahara, T.; Okamoto, H. Appl. Phys. Lett. 2006, 88, 023104–1

Google Scholar

[14] Ali Umar, A.; Oyama, M.; Mat Salleh, M.; Yeop majlis, B. Crystal Growth & Design, 2009, 9, 6, 2835-2840

Google Scholar

[15] Jana, N. R.; Gerheart, L.; Murphy, C. J. J. Phys. Chem. B, 2001, 105, 4065.

Google Scholar