[1]
Cavani, F., Trifiro, F.&Vacari,A.. Hydrotalcite-like anionic clays: preparation, properties and applications. Catalysis Today 11: (1991) 173-301.
DOI: 10.1016/0920-5861(91)80068-k
Google Scholar
[2]
Newman, S.P. Jones,W.. Synthesis, characterization and application of layered double hydroxide containing organic guest. New Journal of Chemistry 22: (1998) 105-115.
Google Scholar
[3]
Vaccari,A. Clays and catalysis: a promising future. Applied Clay Science 14: (1999)161-198.
DOI: 10.1016/s0169-1317(98)00058-1
Google Scholar
[4]
E.D. Dimotakis, T.J. Pinnavaia, New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives Inorg. Chemistry, 29 (1990) 2393.
DOI: 10.1021/ic00338a001
Google Scholar
[5]
S.Miyata, Anion-exchange properties of hydrotalcite-like compounds. Clays clay Mineral, 31 (1983) 305.
DOI: 10.1346/ccmn.1983.0310409
Google Scholar
[6]
S.H. Sarijo, M.H. Zobir, Z. Zulkarnain, Y.Asmah, The effect of Zinc to Aluminium molar ratio on the formatin of zinc-Al-4-chlorophenoxyacetate nanocomposite: AIP Conference Proceedings 1136, American Institute of Physics, 4449 (2009).
DOI: 10.1063/1.3160182
Google Scholar
[7]
M.A. Ulibari, I. Pavlovic, M.C. Hermosin, J. Cornejo, Hydrotalcite-like compounds as potential sorbents of phenols from water Appl. Clay Science, 10 (1995).
DOI: 10.1016/0169-1317(95)00020-5
Google Scholar
[8]
D.P. Das, J. Das, K. Parida, Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solutionJ. Colloid Interf.Science, 261 (2003) 213.
DOI: 10.1016/s0021-9797(03)00082-1
Google Scholar
[9]
Jiao FP, Chen XQ, Fu ZD, Hu YH, Wang YH. Intercalation of Mg-Al layered double hydroxides by (+)-dibenzoyl-d-tartaric acid: preparation and characterization. J MolStruct. (2009);921:328–332.
DOI: 10.1016/j.molstruc.2009.01.024
Google Scholar
[10]
J. Theo Kloprogge, Leisel Hickey, Ray L. Frost, The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminumhydrotalcites J. Solid State Chemistry. 177 (2004) 4047.
DOI: 10.1016/j.jssc.2004.07.010
Google Scholar
[11]
Dong L, Yan L, Hou WG, Liu SJ. Synthesis and release behaviour of composites of camptothecin and layered double hydroxide. J Solid State Chem. (2010); 183:1811-1816.
DOI: 10.1016/j.jssc.2010.05.035
Google Scholar
[12]
E. Kanezeki, S. Sugiyama, Y. Ishikawa The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminumhydrotalcites J. Mater. Chem. 5, 1969 (1995).
Google Scholar
[13]
J. Zaemah, H. M. Zobir, Y. Asmah, Z. Zulkarnain. The effect of substitution of zinc with aluminium in the brucite-like layers on the physicochemical properties of zinc-aluminum-layered double hydroxide-pamoatenanocomposite. J. Porous Mater 10: 45-51 (2010).
DOI: 10.1007/s10934-010-9446-5
Google Scholar
[14]
Cavani F, Trifir'o F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today. (1991);11:173–301.
DOI: 10.1016/0920-5861(91)80068-k
Google Scholar
[15]
Smith BC. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, FL: CRC Press; 1999.
Google Scholar
[16]
Jiao FP, Chen XQ, Fu ZD, Hu YH, Wang YH. Intercalation of Mg-Al layered double hydroxides by (+)-dibenzoyl-d-tartaric acid: preparation and characterization. J. Mol. Struct. (2009);921:328–332.
DOI: 10.1016/j.molstruc.2009.01.024
Google Scholar
[17]
Kloprogge JT, Frost RL. Fourier transform infrared and raman spectroscopic study of the local structure of Mg-, Ni-, and co-hydrotalcites. J Solid State Chem. (1999);146:506–515.
DOI: 10.1006/jssc.1999.8413
Google Scholar
[18]
Wei M, Yuan Q, Evans DG, Wang Z, Duan X. Layered solids as a "molecular container" for pharmaceutical agents: L-tyrosine-intercalated layered double hydroxides. J Mater Chem.(2005); 15:1197–1203.
DOI: 10.1039/b416068a
Google Scholar
[19]
S,H.Sarijo, Hussein M.Z., Yahya, A. &Zainal. Z,.2010. Synthesis of phenoxyherbicides-intercalated layered double hydroxide nanohybrids and their controlled release : Current Nanoscience, (2010): 199-205
DOI: 10.2174/157341310790945614
Google Scholar