A Comparative Study on the Effect of Adiabatic Extrusion by Twin-Screw Extruder to the Crystallization Pattern and Thermal Behavior of Polyamide 6/C20A Nanocomposites

Article Preview

Abstract:

The performance of an adiabatic extrusion in minimizing the risk of thermal degradation for PA6/C20A nanocomposites was investigated in this paper. The screw speed of twin-screw extruder was maintained at constant value of 100 RPM while the clay loadings C20A were varied between 1 wt %, 3wt % and 5 wt % respectively.Thermal gravimetric analysis was used to characterize the thermal property of polyamide6/C20A-nanocomposites and the crystallization pattern was thoroughly examined via the application of differential scanning calorimetry. The time taken for 10 wt.% mass losses of majority adiabatic extruded samples was observed to be longer as compared to the conventional extruded PA6/C20A samples. The combination effect of adiabatic extrusion and nanoclay presence in the PA6-matrix has managed to increase thermal resistant of PA6. The crystallinity grade for each of the samples with different loading of C20A. however has not diversed in value since the index of crystallinity (Xc) remains independent of C20-volume althoughconventional/adiabatic setting of extruder could possibly have greater effect on the crystalline feature of PA6/C20A nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kojima, A.U., M. Kawasumi, A. Okada, Y. Fukushima, T. T. Kurauchi, and O. Kamigaito., Swelling Behavior of Montmorillonite Cation Exchanged for V-amino Acids by E-caprolactam. Material Research, 1993. 8(5): pp.1174-1178.

DOI: 10.1557/jmr.1993.1174

Google Scholar

[2] T. D. Fornes, D.L.H., and D. R. Paul, Nylon-6 Nanocomposites from Alkylammonium-Modified Clay:  The Role of Alkyl Tails on Exfoliation. Macromolecules, 2004. 37(5): pp.1793-1798.

DOI: 10.1021/ma0305481

Google Scholar

[3] Lu Shen, I.Y.P., Ling Chen, Tianxi Liu,Kaiyang Zeng, Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer, 2004. 45(10): pp.3341-3349.

DOI: 10.1016/j.polymer.2004.03.036

Google Scholar

[4] In Yee Phang, T.L., Ashiq Mohamed, Kumari Pallathadka Pramoda, Ling Chen, Lu Shen, Shue Yin Chow, Chaobin He, Xuehong Lu, Xiao Hu, Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polymer International, 2004. 54(2): p.456–464.

DOI: 10.1002/pi.1721

Google Scholar

[5] G. C. Psarras, K.G.G., P. K. Karahaliou, S. N. Georga, C. A. Krontiras, Relaxation phenomena in rubber/layered silicate. eXpress Polymer Letter, 2007. 1(12): pp.837-845.

DOI: 10.3144/expresspolymlett.2007.116

Google Scholar

[6] K. Prashantha, J.S., M. F. Lacrampe, M. Claes, G. Dupin, P. Krawczak, Multi-walled carbon nanotube filled polypropylene-nanocomposites based on masterbatch route:Improvement of dispersion and mechanical properties through PP-g-MA addition. eXpress Polymer Letters, 2008. 2(10): pp.735-745.

DOI: 10.3144/expresspolymlett.2008.87

Google Scholar

[7] Anoop Anand K, U.S.A., Rani Joseph, Carbon nanotubes-reinforced PET nanocomposite by melt-compounding. Journal of Applied Polymer Science, 2007. 104(5): pp.3090-3095.

DOI: 10.1002/app.25674

Google Scholar

[8] Shiyun Li, H.C., Dongmei Cui, Jianzhong Li, Zhenjiang Zhang, Yanhui Wang, Tao Tang, Structure and properties of multi-walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp2ZrCl2 catalyst. Polymer Composites, 2010. 31(3): pp.507-515.

DOI: 10.1002/pc.20831

Google Scholar

[9] Won-Jun Lee, S.-E.L., Chun-Gon Kim, The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Composite Structures, 2006. 76(4): pp.406-410.

DOI: 10.1016/j.compstruct.2005.11.008

Google Scholar

[10] Walid H. Awad, G.B., Daphne Benderly, Wouter L. Ijdo, Ponusa Songtipya, Maria del Mar Jimenez-Gasco, E. Manias, Charles A. Wilkie, Material properties of nanoclay PVC composites. Polymer, 2009. 50: pp.1857-1867.

DOI: 10.1016/j.polymer.2009.02.007

Google Scholar

[11] Fornes TD, Y.P., Keskkula H, Paul DR., Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 2001. 42: pp.9929-9940.

DOI: 10.1016/s0032-3861(01)00552-3

Google Scholar

[12] A. Leszczy´nska a, J.N.b., K. Pielichowski a,∗, J.R. Banerjee, Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta, 2007. 453: pp.75-96.

DOI: 10.1016/j.tca.2006.11.002

Google Scholar

[13] D. L. VanderHart, A.A., and J. W. Gilman, Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 2. Measurement of Clay Dispersion, Crystal Stratification, and Stability of Organic Modifiers. Chemical Material, 2001. 13(10): pp.3796-3809.

DOI: 10.1021/cm011078x

Google Scholar

[14] Rauwendaal, C., Understanding Extrusion, ed. E.H. Immergut. 1998: Hanser/Gardner Publications, Inc.

Google Scholar

[15] J.S Shelley, P.T.M., K.L DeVries, Reinforcement and enviromental degradation of nylon-6/clay nanocomposites. Polymer, 2001. 42(13): pp.5849-5858.

DOI: 10.1016/s0032-3861(00)00900-9

Google Scholar

[16] Richard A. Vaia, B.B.S., Oliver K. Tse, Emmanuel P. Giannelis, Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. Journal of Polymer Science Part B: Polymer Physics, 1997. 35(1): p.59–67.

DOI: 10.1002/(sici)1099-0488(19970115)35:1<59::aid-polb4>3.0.co;2-q

Google Scholar

[17] Pralay Maiti, P.H.N., Masami Okamoto, Naoki Hasegawa, Arimitsu Usuki, Influence of Crystallization on Intercalation, Morphology, and Mechanical Properties of Polypropylene/Clay Nanocomposites. Macromolecules, 2002. 35(6): p.2042–2049.

DOI: 10.1021/ma010852z

Google Scholar

[18] Eulalia Klata, S.B., Kathleen Van de Velde, Józef Garbarczyk, Izabella Krucińska, Crystallinity of Polyamide-6 Matrix in Glass Fibre/Polyamide-6 Composites Manufactured from Hybrid Yarns. FIBRES & TEXTILES in Eastern Europe, 2004. 12(3): pp.64-69.

DOI: 10.1016/s0142-9418(03)00043-6

Google Scholar

[19] Alexandre M, D.P., Polymer layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Material Science Engineering, 2000. 28: pp.1-63.

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[20] Xie W, G.Z., Pan W-P, Hunter D, Singh A, Vaia R., Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chemical Material, 2001. 13(9): pp.2979-2990.

DOI: 10.1021/cm010305s

Google Scholar

[21] Operation, T.o.A.E., James M. Mckelvey. Industrial and Engineering Chemistry, 1954. 46(4): p.5.

Google Scholar

[22] K.P. Pramoda, T.L., Zhehui Liu, Chaobin He, Hung-Jue Sue, Thermal degradation behavior of polyamide 6/clay nanocomposites. Polymer Degradation and Stability, 2003(81): pp.47-56.

DOI: 10.1016/s0141-3910(03)00061-2

Google Scholar

[23] Devaux, E., S. Bourbigot, and A.E. Achari, Crystallization behavior of PA-6 clay nanocomposite hybrid. Journal of Applied Polymer Science, 2002. 86(10): pp.2416-2423.

DOI: 10.1002/app.10920

Google Scholar

[24] Fang-Chyou Chiua, et al., Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener. Polymer, 2005. 46(25): pp.11600-11609.

DOI: 10.1016/j.polymer.2005.09.077

Google Scholar