[1]
E.T. Lilleodden, W. D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater. 54 (2006) 1583-1593.
DOI: 10.1016/j.actamat.2005.11.025
Google Scholar
[2]
C.D. Breach, F.W. Wulff, A brief review of selected aspects of the materials science of ball bonding, Microelectron. Reliab. 50 (2010) 1-20.
DOI: 10.1016/j.microrel.2009.08.003
Google Scholar
[3]
T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, F. Wulff, Cycling loading as an extended nanoindentation technioque, Mat. Sci. Eng. A-Struct. 423 (2006) 14-18.
DOI: 10.1016/j.msea.2005.10.080
Google Scholar
[4]
M. Shah, K. Zheng, A.A.O. Tay, S. Suresh, Mechanical Characterization of the Heat Affected Zone of Gold Wirebonds Using Nanoindentation, J. Electron. Packaging. 126 (2004) 87-93.
DOI: 10.1115/1.1648062
Google Scholar
[5]
P.A. Agyakwa, M.R. Corfield, J.F. Li, W.S. Loh, E. Liotti, S.C. Hogg, C.M. Johnson, Unusual Observations in the Wear-Out of High-Purity Aluminum Wire Bonds Under Extended Range Passive Thermal Cycling, IEEE T. Device. Mat. Re. 10 (2010) 254-262.
DOI: 10.1109/tdmr.2010.2044796
Google Scholar
[6]
A. Jalar, M.N. Zulkifli, S. Abdullah, Nanoindentation Test for the Strength Distribution Analysis of Bonded Au Ball Bonds, Adv. Mat. Res. 148-149 (2011) 1163-1166.
DOI: 10.4028/www.scientific.net/amr.148-149.1163
Google Scholar
[7]
A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer, New York, 2000.
Google Scholar
[8]
G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A 253 (1998) 151-159.
DOI: 10.1016/s0921-5093(98)00724-2
Google Scholar
[9]
I. Lum, J.P. Jung, Y. Zhou, Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate, Metall. Mater. Trans. A 36A (2005) 1279-1286.
DOI: 10.1007/s11661-005-0220-2
Google Scholar
[10]
C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51 (2003) 87-99.
DOI: 10.1016/s1359-6454(02)00303-8
Google Scholar
[11]
C.A. Schuh, A.C. Lund, T.G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta Mater. 52 (2004) 5879-5891
DOI: 10.1016/j.actamat.2004.09.005
Google Scholar
[12]
S. Vadalakonda, R. Banarjee, A. Puthcode and R. Mirshams, Comparison of incipient plasticity in bcc and fcc metals studied using nanoidentation, Mat. Sci. Eng. A-Struct. 426 (2006) 208-213.
DOI: 10.1016/j.msea.2006.04.001
Google Scholar
[13]
Z. Ma, S. Long, Y. Pan, Y. Zhou, Loading rate sensitivity of nanoindentaion creep in polycrystalline Ni films, J. Mater Sci. 43 (2008) 5952-5955.
DOI: 10.1007/s10853-008-2838-0
Google Scholar
[14]
A. C. Ficher-Cripps, Critical review of analysis and interpretation of nanoindentaiton test data, Surf. Coat. Tech. 200 (2006) 4153-4165.
Google Scholar