Effect of Nanoindentation Loading Rate on Gold Ball Bond

Article Preview

Abstract:

Nanoindentation tests with loading rates of 0.05 mN/s, 0.1 mN/s, 0.5 mN/s, and 1.0 mN/s were conducted on the Au ball bond. The effect of different loading on the Au ball bond were analysed based on qualitative and quantitative results. The displacement burst was more pronounced with the increment of loading rates. The increase of hardness value and the decrease of the reduced modulus value when the loading rate was increased are due to the effect of creep. It was found that the loading rate of 0.5 mN/s is the appropriate and stable value for the nanoindentation test on the Au ball bond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-155

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.T. Lilleodden, W. D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater. 54 (2006) 1583-1593.

DOI: 10.1016/j.actamat.2005.11.025

Google Scholar

[2] C.D. Breach, F.W. Wulff, A brief review of selected aspects of the materials science of ball bonding, Microelectron. Reliab. 50 (2010) 1-20.

DOI: 10.1016/j.microrel.2009.08.003

Google Scholar

[3] T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, F. Wulff, Cycling loading as an extended nanoindentation technioque, Mat. Sci. Eng. A-Struct. 423 (2006) 14-18.

DOI: 10.1016/j.msea.2005.10.080

Google Scholar

[4] M. Shah, K. Zheng, A.A.O. Tay, S. Suresh, Mechanical Characterization of the Heat Affected Zone of Gold Wirebonds Using Nanoindentation, J. Electron. Packaging. 126 (2004) 87-93.

DOI: 10.1115/1.1648062

Google Scholar

[5] P.A. Agyakwa, M.R. Corfield, J.F. Li, W.S. Loh, E. Liotti, S.C. Hogg, C.M. Johnson, Unusual Observations in the Wear-Out of High-Purity Aluminum Wire Bonds Under Extended Range Passive Thermal Cycling, IEEE T. Device. Mat. Re. 10 (2010) 254-262.

DOI: 10.1109/tdmr.2010.2044796

Google Scholar

[6] A. Jalar, M.N. Zulkifli, S. Abdullah, Nanoindentation Test for the Strength Distribution Analysis of Bonded Au Ball Bonds, Adv. Mat. Res. 148-149 (2011) 1163-1166.

DOI: 10.4028/www.scientific.net/amr.148-149.1163

Google Scholar

[7] A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer, New York, 2000.

Google Scholar

[8] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A 253 (1998) 151-159.

DOI: 10.1016/s0921-5093(98)00724-2

Google Scholar

[9] I. Lum, J.P. Jung, Y. Zhou, Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate, Metall. Mater. Trans. A 36A (2005) 1279-1286.

DOI: 10.1007/s11661-005-0220-2

Google Scholar

[10] C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51 (2003) 87-99.

DOI: 10.1016/s1359-6454(02)00303-8

Google Scholar

[11] C.A. Schuh, A.C. Lund, T.G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta Mater. 52 (2004) 5879-5891

DOI: 10.1016/j.actamat.2004.09.005

Google Scholar

[12] S. Vadalakonda, R. Banarjee, A. Puthcode and R. Mirshams, Comparison of incipient plasticity in bcc and fcc metals studied using nanoidentation, Mat. Sci. Eng. A-Struct. 426 (2006) 208-213.

DOI: 10.1016/j.msea.2006.04.001

Google Scholar

[13] Z. Ma, S. Long, Y. Pan, Y. Zhou, Loading rate sensitivity of nanoindentaion creep in polycrystalline Ni films, J. Mater Sci. 43 (2008) 5952-5955.

DOI: 10.1007/s10853-008-2838-0

Google Scholar

[14] A. C. Ficher-Cripps, Critical review of analysis and interpretation of nanoindentaiton test data, Surf. Coat. Tech. 200 (2006) 4153-4165.

Google Scholar