Optimization of the Production of Aligned CNTs Array as the Gas Sensing Element

Article Preview

Abstract:

The synthesis of aligned multi-walled carbon nanotubes (MWCNTs) using thermal and floating catalytic chemical vapor deposition (CVD) method has been optimized in order to obtain MWCNTs with specific characteristics namely diameter and thickness of nanotubes array. Process parameters such as substrate preparation which involved buffer layer deposition, temperature and reaction duration were studied. Samples produced were analyzed using FESEM, HRTEM and Raman spectroscopy. Typical thickness of CNTs array obtained using thermal CVDis 38 µm whilst the ones from the floating technique have a wide range of thickness with the thickest being about 639 µm for the duration of 1 hour. Floating CVD method has the capability to produce good quality, aligned CNTs array with various thicknesses required to vary the electrode gap of the ionization-based gas sensor for the reduction of the breakdown voltage, leading to low power consumption and safe operation of the sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-163

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

DOI: 10.1038/354056a0

Google Scholar

[2] H. Hou, A. K. Schaper, Z. Jun, F. Weller and A. Greiner, Large-Scale Synthesis of Aligned Carbon Nanotubes Using FeCl3 as Floating Catalyst Precursor, Chem. Mater. 15 (2003) 580-585.

DOI: 10.1021/cm020970g

Google Scholar

[3] M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, J. Nanosci. & Nanotech. 10 (2010) 3739-3758.

DOI: 10.1166/jnn.2010.2939

Google Scholar

[4] C. J. Lee, J. Park, J. A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett. 360 (2002) 250-255.

DOI: 10.1016/s0009-2614(02)00831-x

Google Scholar

[5] K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, D. J. Kim & H. J. Kim, The Role of Ammonia Treatment in the Alignment of the Carbon Nanotubes Synthesized with Ni and Fe via Thermal Chemical Vapor Deposition, J. Kor. Phys. Soc. 39 (2001) 7-10.

Google Scholar

[6] M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, E. S. Aydil, Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth, J. App. Phys. 108 (2010) 053303-1-8.

DOI: 10.1063/1.3467971

Google Scholar

[7] Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, Z. F. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, App. Phys. A: Mater. Sci. & Proc. 74 (2002) 387-391.

DOI: 10.1007/s003390101186

Google Scholar

[8] B. H. Choi, H. Yoo, Y. B. Kim, J. H. Lee, Effects of Al buffer layer on growth of highly vertically aligned carbon nanotube forests for in situ yarning, Microelec. Eng. 87 (2010) 1500-1505.

DOI: 10.1016/j.mee.2009.11.067

Google Scholar

[9] T. de los Arcos, M. G. Garnier, P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, Strong influence of buffer layer type on carbon nanotube characteristics, Carbon 42 (2004) 187-190.

DOI: 10.1016/j.carbon.2003.10.020

Google Scholar

[10] G.-Y. Xiong, D. Z. Wong, Z. F. Ren, Aligned milimeter-long carbon nanotube arrays grown on single crystal magnesia, Carbon 44 (2006) 969-973.

DOI: 10.1016/j.carbon.2005.10.015

Google Scholar

[11] C. J. Lee, J. H. Han, J. E. Yoo, S. Y. Kang, J. H. Lee, K. Cho, Well-Aligned Carbon Nanotubes Grown on a Large-Area Si Substrate by Thermal Chemical-Vapor Deposition, J. Kor. Phys. Soc. 37 (2000) 858-861.

DOI: 10.3938/jkps.37.858

Google Scholar

[12] H. Liu, Y. Zhang, D. Arato, R. Li, P. Merel, X. Sun, Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer, Sur. & Coat. Tech. 202 (2008) 4114-4120.

DOI: 10.1016/j.surfcoat.2008.02.025

Google Scholar

[13] T. de los Arcos, Z. M. Wu and P. Oelhafen, Is aluminum a suitable buffer layer for carbon nanotube growth?, Chem. Phys. Lett. 380 (2003) 419-423.

DOI: 10.1016/j.cplett.2003.09.057

Google Scholar

[14] I.T. Han, B.K. Kim, H.J. Kim, M.Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim, Effect of Al and catalyst thicknesses on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400 (2004) 139-144.

DOI: 10.1016/j.cplett.2004.10.123

Google Scholar

[15] Y. Homma, Y. Kobayashi, T. Ogino, D. Takagi, R. Ito, Y.T. Jung and P.M. Ajayan, "Role of Transition Metal Catalysts in Single-Walled Carbon Nanotube Growth in Chemical Vapor Deposition," J. Phys. Chem., vol. 107, pp.12161-12164, 2003.

DOI: 10.1021/jp0353845

Google Scholar

[16] M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47-99.

DOI: 10.1016/j.physrep.2004.10.006

Google Scholar

[17] M. Zdrojek, W. Gebicki, C. Jastrzebski, T. Melin and A. Huczko, Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy, Solid State Phenom. 99 (2004) 265-268.

DOI: 10.4028/www.scientific.net/ssp.99-100.265

Google Scholar

[18] C. J. Lee, T. J. Lee and S. C. Lyu, Growth of Vertically Aligned Bamboo-Shaped Carbon Nanotubes, J. Kor. Phys. Soc. 39 (2011) 59-62.

Google Scholar