[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.
DOI: 10.1038/354056a0
Google Scholar
[2]
H. Hou, A. K. Schaper, Z. Jun, F. Weller and A. Greiner, Large-Scale Synthesis of Aligned Carbon Nanotubes Using FeCl3 as Floating Catalyst Precursor, Chem. Mater. 15 (2003) 580-585.
DOI: 10.1021/cm020970g
Google Scholar
[3]
M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, J. Nanosci. & Nanotech. 10 (2010) 3739-3758.
DOI: 10.1166/jnn.2010.2939
Google Scholar
[4]
C. J. Lee, J. Park, J. A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett. 360 (2002) 250-255.
DOI: 10.1016/s0009-2614(02)00831-x
Google Scholar
[5]
K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, D. J. Kim & H. J. Kim, The Role of Ammonia Treatment in the Alignment of the Carbon Nanotubes Synthesized with Ni and Fe via Thermal Chemical Vapor Deposition, J. Kor. Phys. Soc. 39 (2001) 7-10.
Google Scholar
[6]
M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, E. S. Aydil, Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth, J. App. Phys. 108 (2010) 053303-1-8.
DOI: 10.1063/1.3467971
Google Scholar
[7]
Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, Z. F. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, App. Phys. A: Mater. Sci. & Proc. 74 (2002) 387-391.
DOI: 10.1007/s003390101186
Google Scholar
[8]
B. H. Choi, H. Yoo, Y. B. Kim, J. H. Lee, Effects of Al buffer layer on growth of highly vertically aligned carbon nanotube forests for in situ yarning, Microelec. Eng. 87 (2010) 1500-1505.
DOI: 10.1016/j.mee.2009.11.067
Google Scholar
[9]
T. de los Arcos, M. G. Garnier, P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, Strong influence of buffer layer type on carbon nanotube characteristics, Carbon 42 (2004) 187-190.
DOI: 10.1016/j.carbon.2003.10.020
Google Scholar
[10]
G.-Y. Xiong, D. Z. Wong, Z. F. Ren, Aligned milimeter-long carbon nanotube arrays grown on single crystal magnesia, Carbon 44 (2006) 969-973.
DOI: 10.1016/j.carbon.2005.10.015
Google Scholar
[11]
C. J. Lee, J. H. Han, J. E. Yoo, S. Y. Kang, J. H. Lee, K. Cho, Well-Aligned Carbon Nanotubes Grown on a Large-Area Si Substrate by Thermal Chemical-Vapor Deposition, J. Kor. Phys. Soc. 37 (2000) 858-861.
DOI: 10.3938/jkps.37.858
Google Scholar
[12]
H. Liu, Y. Zhang, D. Arato, R. Li, P. Merel, X. Sun, Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer, Sur. & Coat. Tech. 202 (2008) 4114-4120.
DOI: 10.1016/j.surfcoat.2008.02.025
Google Scholar
[13]
T. de los Arcos, Z. M. Wu and P. Oelhafen, Is aluminum a suitable buffer layer for carbon nanotube growth?, Chem. Phys. Lett. 380 (2003) 419-423.
DOI: 10.1016/j.cplett.2003.09.057
Google Scholar
[14]
I.T. Han, B.K. Kim, H.J. Kim, M.Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim, Effect of Al and catalyst thicknesses on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400 (2004) 139-144.
DOI: 10.1016/j.cplett.2004.10.123
Google Scholar
[15]
Y. Homma, Y. Kobayashi, T. Ogino, D. Takagi, R. Ito, Y.T. Jung and P.M. Ajayan, "Role of Transition Metal Catalysts in Single-Walled Carbon Nanotube Growth in Chemical Vapor Deposition," J. Phys. Chem., vol. 107, pp.12161-12164, 2003.
DOI: 10.1021/jp0353845
Google Scholar
[16]
M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47-99.
DOI: 10.1016/j.physrep.2004.10.006
Google Scholar
[17]
M. Zdrojek, W. Gebicki, C. Jastrzebski, T. Melin and A. Huczko, Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy, Solid State Phenom. 99 (2004) 265-268.
DOI: 10.4028/www.scientific.net/ssp.99-100.265
Google Scholar
[18]
C. J. Lee, T. J. Lee and S. C. Lyu, Growth of Vertically Aligned Bamboo-Shaped Carbon Nanotubes, J. Kor. Phys. Soc. 39 (2011) 59-62.
Google Scholar