Green Synthesis of Silver Nanoparticles Using Aqueous Floral Extract of Nelumbo Nucifera

Article Preview

Abstract:

The aim of the present study is to synthesize silver nanoparticles, using an aqueous floral extract of common Lotus, i.e Nelumbo nucifera. The synthesized nanoparticles were characterized using UV, TEM, EDX, AFM & XRD. The synthesized AgNPs were confirmed due to the colour change from colourless to reddish brown just after the addition of the aqueous floral extract of Nelumbo nucifera. The UV results of AgNPs showed the excitation of surface Plasmon resonance band at 427 nm. TEM results showed that the synthesized AgNPs were uniformed; monodispersed,spherical in shape and the particle size were found to be 77.81 ± 3.54 nm. EDX spectrum of AgNPs confirms strong signals from Ag (64%) and other elements such as C, O and Cl. The morphology of the synthesized AgNPs by AFM analysis resembled the TEM micrograph. The crystalline nature of the AgNPs was confirmed by XRD. The present study concludes that the aqueous floral extract of Nelumbo nucifera could be used as an effective reducing agent for the synthesis of AgNP. The green synthesis ofsilver nanoparticles is non-toxic and cost-effective and thus remains to be an alternative method to other physical and chemical reduction methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-111

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mazu, M. "Electrochemically Prepared Silver Nanoflakes and Nanowires". Electrochemistry Communications. 2004, 6, 400-403.

DOI: 10.1016/j.elecom.2004.02.011

Google Scholar

[2] Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007, 73, 1712–1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[3] Rosemary, M. J.; and Pradeep, T. Solvothermal Synthesis of Silver Nanoparticles from Thiolates. Colloids and Surfaces A. 2003, 268, 81-84.

DOI: 10.1016/j.jcis.2003.08.009

Google Scholar

[4] Xie, Y.; Ye, R.; and Liu, H. Synthesis of Silver Nanoparticles in Reverse Micelles Biosurfactant. Colloids and Surfaces A. 2006, 279, 175-178.

DOI: 10.1016/j.colsurfa.2005.12.056

Google Scholar

[5] Maillard, M.; Giorgio, S.; & Pileni, M. P. Silver nanodisks. Adv. Mater. 2002, 14, 1084–1086.

DOI: 10.1002/1521-4095(20020805)14:15<1084::aid-adma1084>3.0.co;2-l

Google Scholar

[6] Pillai, Z.S.; Kamat, P.V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method". J. Phys. Chem. B. 2004, 108, 945-951.

DOI: 10.1021/jp037018r

Google Scholar

[7] Patel, K.; Kapoor, S.; Dave, D.P.; Murherjee, T. Phenomenon is related to size of colloidal silver particles. J.Chem.Sci. 2005, 117, 53-60.

Google Scholar

[8] Salkar, R.A.; Jeevanandam, P.; Aruna, S.T.; Koltypin, Y.; Gedanken, A. The Sonochemical preparation of amorphous silver nanoparticles. J. Mater. Chem. 1999, 9, 1333.

DOI: 10.1039/a900568d

Google Scholar

[9] Soroushian, B.; Lampre, I.; Belloni, J.; and Mostafavi, M. Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiation Physics and Chemistry, 2005, 72, 111–118.

DOI: 10.1016/j.radphyschem.2004.02.009

Google Scholar

[10] Loo, Y.Y.; Chieng, B.W.; Nishibuchi, M.; Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia Sinesis. International Journal of Nanomedicine. 2012, 7, 4263 -4267.

DOI: 10.2147/ijn.s33344

Google Scholar

[11] Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009, 32, 79-84.

DOI: 10.1007/s00449-008-0224-6

Google Scholar

[12] Huang, H.; & Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr Res. 2004, 339, 2627-2631.

DOI: 10.1016/j.carres.2004.08.005

Google Scholar

[13] Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010, 45, 1065–1071.

DOI: 10.1016/j.procbio.2010.03.024

Google Scholar

[14] Zong M.X.; Qing B.Z.; Hema L.P.; Vicki L.C.; and Pedro J.A. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12, 4271–4275.

Google Scholar

[15] Shrivastava, S.; Bera, T.; Singh, S.K.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of Antiplatelet Properties of Silver Nanoparticles. ACS Nano. 2009, 3, 1357–1364.

DOI: 10.1021/nn900277t

Google Scholar

[16] Edeoga H.O.; Okwu D.E.; Mbaebie B. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005, 4, 685-688.

DOI: 10.5897/ajb2005.000-3127

Google Scholar

[17] Burda, C.; Chen, X.; Narayanan, R.; EI-Sayed, M.A. The chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005, 105, 1025.

DOI: 10.1021/cr030063a

Google Scholar

[18] Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007, 9, 852-858.

DOI: 10.1039/b615357g

Google Scholar

[19] Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003, 19, 1627-1631.

DOI: 10.1021/bp034070w

Google Scholar

[20] Magudapathy, P.; Gangopadhyay, P.; Panigrahi, B.K.; Nair, K.G.M, and Dhara, S. Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B. 2001, 299, 142 – 146.

DOI: 10.1016/s0921-4526(00)00580-9

Google Scholar