Preparation and Applications of Non-Metal Doped Semiconductors as Photocatalysts

Article Preview

Abstract:

Water is one of the most essential commodity for mankind, but we know that only 1% of available water on earth may be used for human consumption. However, due to increasing anthropogenic activities the water is getting polluted. Scientists all over the world are looking for ecofriendly methods to treat polluted water for its reuse. One technique that has been gaining popularity in recent years and it is quite promising also for the treatment of resilient pollutants is the photocatalysis. Numerous studies have been reported in the last decade on the photocatalytic degradation of organic pollutants using semiconductor materials as photocatalysts, but the limited optical absorption due to the relatively wide band gap energies and recombination of photogenerated electron-hole pair results in low activity of photocatalysts. Therefore, improvement of charge separation as well as enhancement of visible light absorption is highly important for the efficient photocatalytic reactions. In this context, doping of semiconductor by non-metals seems a promising strategy to enhance the activity of a photocatalyst. In this chapter; preparation, characterization, mechanism and various applications of non-metal doped semiconductors has been reported and the applications of semiconductors have been focused on waste water treatment. Some other applications include generation of hydrogen by photocatalytic splitting of water, antimicrobial activity etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-254

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kumar, M. Paliwal, R. Ameta, S. C. Ameta, Oxidation of fast green FCF by the solar photo-Fenton process, J. Iran. Chem. Soc. 5 (2008) 346-351.

DOI: 10.1007/bf03246129

Google Scholar

[2] M. A. Rauf, S. S. Ashraf, Radiation induced degradation of dyes - An overview, J. Hazard. Mater. 166 (2009) 6-16.

Google Scholar

[3] R. H. Souther, T. A. Alspaugh, Textile wastes recovery and treatment: Sewage and Industrial waste, J. Water Pollut. Control Fed. 29 (1957) 804-810.

Google Scholar

[4] A. Hamza, M. F. Hamoda, Proc. 35th Purdue Industrial Waste Congress, West Lafayette, IN, USA (1980).

Google Scholar

[5] J. P. Lorimer, T. J. Mason, M. Plattes, S. S. Phull, D.J. Walton, Degradation of dye effluent, Pure Appl. Chem. 12 (2001) 1957-1968.

DOI: 10.1351/pac200173121957

Google Scholar

[6] IUPAC glossary of terms used in photochemistry, organic and biomolecular chemistry division commission on photochemistry, Pure Appl. Chem. 60, (1988) 1055-1106.

Google Scholar

[7] O. Heintz, D. Robert, J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A, 135 (2000) 77-80.

DOI: 10.1016/s1010-6030(00)00255-0

Google Scholar

[8] O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment Chem. Rev. 93 (1993) 671-698.

DOI: 10.1021/cr00018a003

Google Scholar

[9] S. C. Ameta, J. J. Vora, S. Sharma, A. Patel, C. Patel, The photoelectrochemical study of picric acid using ZnO as 'n' type semiconductor, Synth. React. Inorg. Met.-Org. Nan. 35 (2005) 433-437.

DOI: 10.1081/sim-200066969

Google Scholar

[10] B. Cao, W. J. Cai, From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions, J. Phys. Chem. C 112 (2008) 680–685.

DOI: 10.1021/jp076870l

Google Scholar

[11] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J Photochem. Photobiol. C 1 (2000) 1-21.

Google Scholar

[12] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53-229.

Google Scholar

[13] H. Wang, J. P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J Phys: Condens. Matter 18 (2006) 421.

Google Scholar

[14] J. G. Yu, M. H. Zhou, B. Cheng, X. J. Zhao, Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders, J. Mol. Catal. A: Chem. 246 (2006) 176-184.

DOI: 10.1016/j.molcata.2005.10.034

Google Scholar

[15] Y. Xie, Y. Z. Li, X. J. Zhao, Low-temperature preparation and visible-light-induced catalytic activity of anatase F–N-codoped TiO2, J. Mol. Catal. A Chem. 277 (2007) 119-126.

DOI: 10.1016/j.molcata.2007.07.031

Google Scholar

[16] R. Asashi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[17] T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist, S. E. Lindquist, Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B 107 (2003) 5709-5716.

DOI: 10.1021/jp027345j

Google Scholar

[18] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.

DOI: 10.1021/jp030133h

Google Scholar

[19] K. Kobayakawa, Y. Murakami, Y. Sato, Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, J. Photochem. Photobiol. A: Chem. 170 (2005) 177-179.

DOI: 10.1016/j.jphotochem.2004.07.010

Google Scholar

[20] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin Solid Films, 453-454 (2004) 162–166.

DOI: 10.1016/j.tsf.2003.11.185

Google Scholar

[21] S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, Preparation of nitrogen doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine, J. Mater. Chem. 13 (2003) 2996-3001.

DOI: 10.1039/b309217h

Google Scholar

[22] S. U. M. Khan, M. A. Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, J. Sci. 297 (2002) 2243-2245.

DOI: 10.1126/science.1075035

Google Scholar

[23] A. Nambu, J. Graciani, J. A. Rodriguez, Q. Wu, E. Fujita, J. Fdez Sanz, N-doping of TiO2(110): Photoemission and density functional studies, J. Chem. Phys. 125 (2006) 094706-094714.

DOI: 10.1063/1.2345062

Google Scholar

[24] H. Ozaki, S. Iwamoto, M. Inoue, Enhanced visible light sensitivity of nitrogen-doped nanocrystalline Si-modified titania prepared by the glycothermal method, Chem. Lett. 34 (2005) 1082-1083.

DOI: 10.1246/cl.2005.1082

Google Scholar

[25] S. Iwamoto, K. Saito, M. Inoue, K. Kagawa, Preparation of the xerogels of nanocrystalline titanias by the removal of the glycol at the reaction temperature after the glycothermal method and their enhanced photocatalytic activities, Nano Lett. 1 (2001) 417-421.

DOI: 10.1021/nl010025b

Google Scholar

[26] J. M. Mwabora, T. Lindgren, E. Avendano, T. F. Jaramillo, J. Lu, S. E. Lindquist, C. G. Granqvist, Structure, composition and morphology of photoelectrochemically active TiO2 – Nx thin films deposited by reactive magnetron DC sputtering, J. Phys. Chem. B 108 (2004) 20193-20198.

DOI: 10.1021/jp0368987

Google Scholar

[27] Y. Guo, X. W. Z hang, G. R. Han, Investigation of structure and properties of N-doped TiO2 thin films grown by APCVD, Mat. Sci. Eng. B 135 (2006) 83-87.

DOI: 10.1016/j.mseb.2006.08.031

Google Scholar

[28] H. Q. Sun, Y. Bai, Y. P. Cheng, W. Q. Jin, N. P. Xu, Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45 (2006) 4971-4976.

DOI: 10.1021/ie060350f

Google Scholar

[29] R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light, J. Phys. Chem. B 109 (2005) 5994-6003.

DOI: 10.1021/jp044979c

Google Scholar

[30] C. D. Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B 109 (2005) 11414-11419.

DOI: 10.1021/jp051756t

Google Scholar

[31] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation for an efficient N- doping of TiO2 nanotubes, Nano. Lett. 6 (2006) 1080-1082.

DOI: 10.1021/nl0600979

Google Scholar

[32] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven nitrogen-doped TiO2 photocatalysts: Effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants, Mat. Sci. Eng. B 117 (2005) 67-75.

DOI: 10.1016/j.mseb.2004.10.018

Google Scholar

[33] J. Wang, J. F. Lu, Q. W. Zhang, S. Yin, T. Sato, F. Saito, Mechanochemical doping of a non-metal element into zinc oxide, Chem. Sustain. Develop., 15 (2007) 249-253.

Google Scholar

[34] L. Deng, Y. Chen, M. Yao, S. Wang, B. Zhu, W. Huang, S. Zhang, Synthesis, characterization of B-doped TiO2 nanotubes with high photocatalytic activity, J. Sol-Gel Sci. Technol. 53 (2010) 535–541.

DOI: 10.1007/s10971-009-2128-6

Google Scholar

[35] Y. Yu, H. H. Wu, B. L. Zhu, S. R. Wang, W. P. Huang, S. H. Wu, S. M. Zhang, Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes, Catal. Lett. 121 (2008) 165–171.

DOI: 10.1007/s10562-007-9316-1

Google Scholar

[36] H. Sun, Y. Bai, H. Liu, W. Jin, N. Xu, Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation, J. Photochem. Photobiol. A: Chem. 201 (2009) 15–22.

DOI: 10.1016/j.jphotochem.2008.08.021

Google Scholar

[37] Y. Xie, Q. Zhao, X. J. Zhao, Y. Li, Low temperature preparation and characterization of N-doped and N-S-codoped TiO2 by sol–gel route, Catal. Lett. 118 (2007) 231–237.

DOI: 10.1007/s10562-007-9175-9

Google Scholar

[38] Y. G. Sheng, L. P. Liang, Y. Xu, D. Jiang, D. Wu, Preparation of N-doped TiO2 visible photocatalyst under low temperature via sol-gel process, Chin. J. Inorg. Chem., 24 (2008) 78–82.

Google Scholar

[39] M. Sathish, B. Viswanathan, R. P. Viswanath, Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex, Appl. Catal. B 74 (2007) 307–312.

DOI: 10.1016/j.apcatb.2007.03.003

Google Scholar

[40] Y. Yokosuka, K. Oki, H. Nishikiori, Y. Tatsumi, N. Tanaka, T. Fujii, Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process, Res. Chem. Intermed. 35 (2009) 43–53.

DOI: 10.1007/s11164-008-0019-z

Google Scholar

[41] C. He, B. Tian, J. Zhang, N, B, Si-tridoped mesoporous TiO2 with high surface area and excellent visible-light photocatalytic activity, Res. Chem. Intermed. 36 (2010) 349–359.

DOI: 10.1007/s11164-010-0145-2

Google Scholar

[42] J. Guo, J. Li, A. Yin, K. Fan, W. Dai, Photodegradation of rhodamine B on sulfur doped ZnO/TiO2 nanocomposite photocatalyst under visible-light irradiation, Chin. J. Chem. 28 (2010) 2144-2150.

DOI: 10.1002/cjoc.201090355

Google Scholar

[43] M. O'Donoghue, A guide to man-made gemstones. Great Britain: Van Nostrand Reinhold Company (1983) p.40–44.

Google Scholar

[44] M. Ye, Y. Yang, Y. Zhang, T. Zhang, W. Shao, Hydrothermal synthesis of hydrangea-like F-doped titania microspheres for the photocatalytic degradation of carbamazepine under UV and visible light irradiation, J. Nano. (2012) Art. No. 115134.

DOI: 10.1155/2012/583417

Google Scholar

[45] L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu, L. Jian, Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping, Appl. Phys. Lett. 98, (2011) 211903-211905.

DOI: 10.1063/1.3593147

Google Scholar

[46] Y. Hu, X. Zhang, C. Wei, Simple preparation of Mn–N-codoped titania photocatalyst with visible light response, Res. Chem. Intermed. 36 (2010) 95–101.

DOI: 10.1007/s11164-010-0118-5

Google Scholar

[47] L. Carlier, M. Baron, A. Chamayou, G. Couarazze, Use of co-grinding as a solvent-free solid state method to synthesize dibenzophenazines, Tetrahedron Lett. 52 (2011) 4686-4689.

DOI: 10.1016/j.tetlet.2011.07.003

Google Scholar

[48] M. Baron, A. Chamayou, L. Marchioro, J. Raffi, Radicalar probes to measure the action of energy on granular materials, Adv. Powder Technol. 16 (2005) 199-211.

DOI: 10.1163/1568552053750242

Google Scholar

[49] J. Wang, S. Yin, Q.W. Zhang, F. Saito, T. Sato, Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties, Chem. Lett., 32 (2003) 540-541.

DOI: 10.1246/cl.2003.540

Google Scholar

[50] J. A. Rengifo-Herrera, J. Kiwi, C. Pulgarin, N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A: Chem. 205 (2009) 109–115.

DOI: 10.1016/j.jphotochem.2009.04.015

Google Scholar

[51] S. N. Ng, Y. P. Tan, Y. H. Taufiq-Yap, Mechanochemical synthesis and characterisation of bismuth-niobium oxide ion conductors, J. Phys. Sci. 20 (2009) 75–86.

Google Scholar

[52] S. Y. Treschev, P. W. Chou, T. H. Tseng, J. B. Wang, E. V. Perevedentseva, C. L. Cheng, Photoactivities of the visible light-activated mixedphase carbon-containing titanium dioxide: The effect of carbon incorporation, Appl. Catal. B 79 (2008) 8-16.

DOI: 10.1016/j.apcatb.2007.09.046

Google Scholar

[53] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxide, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[54] K. Takeshita, A. Yamakata, T. Ishibashi, H. Onishu, K. Nishijima, T. Ohno, Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2, J. Photochem. Photobiol. 177 (2006) 269-275.

DOI: 10.1016/j.jphotochem.2005.06.006

Google Scholar

[55] J. Yu, M. Zhou, B. Cheng, X. Zhao, Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders, J. Mol. Catal. A 246 (2006) 176-184.

DOI: 10.1016/j.molcata.2005.10.034

Google Scholar

[56] A. Zaleska, J. W. Sobczak, E. Grabowska, J. Hupka, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light, Appl. Catal. B 78 (2007 92-100.

DOI: 10.1016/j.apcatb.2007.09.005

Google Scholar

[57] L. Korosi, I. Dekany, Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide, Colloids Surf. A 280 (2006) 146-154.

Google Scholar

[58] C. Daimei, J. Zhongyi, G. Jiaqing, Z. Juhong, Y. Dong, A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6, J. Nanopart. Res. 11 (2009) 303–313.

DOI: 10.1007/s11051-008-9383-2

Google Scholar

[59] G. Liu, X. Wanga, L. Wangb, Z. Chen, F. Li, G. Qing, M. Lu, H.-M. Cheng, Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid Interface Sci. 334 (2009) 171–175.

DOI: 10.1016/j.jcis.2009.02.047

Google Scholar

[60] Y. Meng, J. Chen, Y. Wang, H. Dingy, Y. Shan, N, F-codoped TiO2 nanocrystals as visible light-activated photocatalyst, J. Mater. Sci. Technol. 25 (2009) 73.

Google Scholar

[61] C. He, B. Tian, J. Zhang, N, B, Si-tridoped mesoporous TiO2 with high surface area and excellent visible-light photocatalytic activity, Res. Chem. Intermed. 36 (2010) 349–359.

DOI: 10.1007/s11164-010-0145-2

Google Scholar

[62] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-94.

DOI: 10.1021/cr00033a004

Google Scholar

[63] A. Choi, W. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[64] T. Ihara, M. Miyoshi, Y. Triyama, O. Marsumato, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B 42 (2003) 403-409.

DOI: 10.1016/s0926-3373(02)00269-2

Google Scholar

[65] C. L. Yu, J. C. Yu, A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity, Catal. Lett. 129 (2009) 462-470.

DOI: 10.1007/s10562-008-9824-7

Google Scholar

[66] B. Yang, Z. P. Zhu, Y. Zhou, C. B. Xia, Preparation, characterization and photocatalytic activity of Gd/N-codoped TiO2, J. Sci. Conf. Proc. 1 (2009) 243-246.

DOI: 10.1166/jcp.2009.1013

Google Scholar

[67] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy, V. Murugesan, Kinetics of photocatalytic degradation of reactive yellow 17 dye in aqueous solutions using UV irradiation, J. Environ. Sci. Healths, 36 (2003) 203-213.

DOI: 10.1081/ese-100102618

Google Scholar

[68] C. Rodriguez, A. Dominguez, A. Sanroman, Photocatalytic degradation of dyes in aqueous solution operating in a fluidised bed reactor, Chemosphere, 46 (2002) 83-86.

DOI: 10.1016/s0045-6535(01)00130-8

Google Scholar

[69] L. Young, J. Yu, Ligninase-catalysed decolorization of synthetic dyes, Water Res., 31 (1997) 1187-1193.

DOI: 10.1016/s0043-1354(96)00380-6

Google Scholar

[70] G. Liu, X. Wang, L. Wang, Z. Chen, F. Li, G. Q. Lu, H. M. Cheng, Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid. Inter. Sci. 334 (2009) 171–175.

DOI: 10.1016/j.jcis.2009.02.047

Google Scholar

[71] D. Chen, Z. Jiang, J. Geng, J. Zhu, D. Yang, A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6, J. Nanopart. Res. 11 (2009) 303–313.

DOI: 10.1007/s11051-008-9383-2

Google Scholar

[72] H. Ozaki, S. Iwamoto, M. Inoue, Improved visible-light responsive photocatalytic activity of N and Si co-doped titanias, J. Mater. Sci. 42 (2007) 4009–4017.

DOI: 10.1007/s10853-006-0236-z

Google Scholar

[73] N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ahmad, Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications, Curr. Appl. Phys. 12 (2012) 1485-1492.

DOI: 10.1016/j.cap.2012.04.019

Google Scholar

[74] F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, N. Wu, Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing, Nano. Res. 5 (2012) 213–221.

DOI: 10.1007/s12274-012-0201-x

Google Scholar

[75] L. Lin, W. Lin, J. L. Xie, Y. X. Zhu, B. Y. Zhao, Y. C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles, Appl. Catal. B, 75 (2007) 52-58.

DOI: 10.1016/j.apcatb.2007.03.016

Google Scholar

[76] S. M. Marques, C. J. Tavares , L. F. Oliveira, A. M. F. Oliveira-Campos, Photocatalytic degradation of C.I. reactive blue 19 with nitrogen-doped TiO2 catalysts thin films under UV/visible light, J. Mol. Struc. 983 (2010) 147–152.

DOI: 10.1016/j.molstruc.2010.08.044

Google Scholar

[77] D. Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang, Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin, Appl. Surf. Sci. 255 (2008) 2879–2884.

DOI: 10.1016/j.apsusc.2008.08.032

Google Scholar

[78] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[79] M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light, Appl. Catal. B: Environ. 89 (2009) 563–569.

DOI: 10.1016/j.apcatb.2009.01.016

Google Scholar

[80] H. Ozaki, S. Iwamoto, M. Inoue, Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation, Catal. Lett. 113 (2007) 95-98.

DOI: 10.1007/s10562-007-9029-5

Google Scholar

[81] Y. Wang, Z. Zhang, Y. Zhu, Z. Li, R. Vajtai, L. Ci, P. M. Ajayan, Nanostructured VO2 photocatalysts for hydrogen production, ACS Nano, 2 (2008) 1492–1496.

DOI: 10.1021/nn800223s

Google Scholar

[82] X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, Z. Zou, Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production, Appl. Surf. Sci. 253 (2007) 8500–8506.

DOI: 10.1016/j.apsusc.2007.04.035

Google Scholar

[83] J. S. Jang, S. H. Choi, D. H. Kim, J. W. Jang, K. S. Lee, J. S. Lee, Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube, J. Phys. Chem. C, 113 (2009) 8990–8996.

DOI: 10.1021/jp900653r

Google Scholar

[84] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503–6570.

DOI: 10.1021/cr1001645

Google Scholar

[85] L. Randeniya, A. Murphy, I. Plumb, A study of S doped TiO2 for photoelectrochemical hydrogen generation from water, J. Mater. Sci., 43 (2008) 1389–1399.

DOI: 10.1007/s10853-007-2309-z

Google Scholar

[86] J. Yuan, M. Chen, J. Shi, W. Shangguan, Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride, Int. J. Hydrogen Energ., 31 (2006) 1326–1331.

DOI: 10.1016/j.ijhydene.2005.11.016

Google Scholar

[87] T. Mishima, M. Matsuda, M. Miyake, Visible-light photocatalytic properties and electronic structure of Zr based oxynitride, Zr2ON2, derived from nitridation of ZrO2, Appl. Catal. A, 324 (2007) 77–82.

DOI: 10.1016/j.apcata.2007.03.017

Google Scholar

[88] Y. Sun, C. J. Murphy, K. R. Reyes-Gil, E. A. Reyes-Garcia, J. P. Lilly, D. Raftery, Carbon-doped In2O3 films for photoelectrochemical hydrogen production, Int. J. Hydrogen Energ., 33 (2008) 5967–5974.

DOI: 10.1016/j.ijhydene.2008.07.100

Google Scholar

[89] S. Ge, H. Jia, H. Zhao, Z. Zheng, and L. Zhang, First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures, J. Mater. Chem. 20 (2010) 3052–3058.

DOI: 10.1039/b923586h

Google Scholar

[90] Q. Gu, H. Zhuang, J. Long, X. An, H. Lin, H. Lin, X. Wang, Enhanced hydrogen production over C-Doped CdO photocatalyst in Na2S/Na2SO3 solution under visible light irradiation, Internat. J. Photoenergy (2012) Article ID 857345.

DOI: 10.1155/2012/857345

Google Scholar

[91] X. Sun, H. Liu, J. Dong, J. Wei, Y. Zhang, Preparation and characterization of Ce/N-codoped TiO2 particles for production of H2 by photocatalytic splitting water under visible light, Catal. Lett. 135 (2010) 219–225.

DOI: 10.1007/s10562-010-0302-7

Google Scholar

[92] M. Z. Selcuk, M. S. Boroglu, I. Boz, Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst, Reac. Kinet. Mech. Cat. 106 (2012) 313–324.

DOI: 10.1007/s11144-012-0434-4

Google Scholar

[93] P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction toward an understanding of its killing mechanism, Appl. Environ. Microbiol. 65 (1999) 4094–4098.

DOI: 10.1128/aem.65.9.4094-4098.1999

Google Scholar

[94] M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito., Cobalt ion doped TiO2 photocatalyst response to visible light, J. Colloid Interface Sci. 224 (2000) 202–204.

DOI: 10.1006/jcis.1999.6694

Google Scholar

[95] M. C. Yang, T. S. Yang, M. S. Wong, Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition, Thin Solid Films 469–470 (2004) 1–5.

DOI: 10.1016/j.tsf.2004.06.189

Google Scholar

[96] T. S. Yang, C. B. Shiu, M. S. Wong, Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation, Surface Sci. 548 (2004) 75–82.

DOI: 10.1016/j.susc.2003.10.044

Google Scholar

[97] M. S. Wong, W. C. Chu, D. S. Sun, H. S. Huang, J. H. Chen, P. J. Tsai, N. T. Lin, M. S. Yu, S. F. Hsu, S. L. Wang, H. H. Chang, Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol. (2006) 6111–6116.

DOI: 10.1128/aem.02580-05

Google Scholar

[98] M. C. Martino, G. Rossi, I. Martini, I. Tattoli, D. Chiavolini, A. Phalipon, P. J. Sansonetti, M. L. Bernardini, Mucosal lymphoid infiltrate dominates colonic pathological changes in murine experimental shigellosis, J. Infect. Dis. 192 (2005) 136–148.

DOI: 10.1086/430740

Google Scholar

[99] C. W. Dunnill, Z. A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D. J. Morganc, I. P. Parkin, White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application, J. Mater. Chem., 19 (2009) 8747–8754.

DOI: 10.1039/b913793a

Google Scholar

[100] T. Fukuda, Y. Imamura, M. Maeda, T. Satou, M. Oonaka, H. Morita, Bactericidal activity of copper-containing sulfur-doped TiO2 against staphylococcus aureus under visible-light illumination, J. Environ. Biotech. 9 (2009) 37–41.

Google Scholar