p.169
p.194
p.206
p.219
p.236
p.255
p.266
p.284
p.293
Preparation and Applications of Non-Metal Doped Semiconductors as Photocatalysts
Abstract:
Water is one of the most essential commodity for mankind, but we know that only 1% of available water on earth may be used for human consumption. However, due to increasing anthropogenic activities the water is getting polluted. Scientists all over the world are looking for ecofriendly methods to treat polluted water for its reuse. One technique that has been gaining popularity in recent years and it is quite promising also for the treatment of resilient pollutants is the photocatalysis. Numerous studies have been reported in the last decade on the photocatalytic degradation of organic pollutants using semiconductor materials as photocatalysts, but the limited optical absorption due to the relatively wide band gap energies and recombination of photogenerated electron-hole pair results in low activity of photocatalysts. Therefore, improvement of charge separation as well as enhancement of visible light absorption is highly important for the efficient photocatalytic reactions. In this context, doping of semiconductor by non-metals seems a promising strategy to enhance the activity of a photocatalyst. In this chapter; preparation, characterization, mechanism and various applications of non-metal doped semiconductors has been reported and the applications of semiconductors have been focused on waste water treatment. Some other applications include generation of hydrogen by photocatalytic splitting of water, antimicrobial activity etc.
Info:
Periodical:
Pages:
236-254
Citation:
Online since:
July 2013
Keywords:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] A. Kumar, M. Paliwal, R. Ameta, S. C. Ameta, Oxidation of fast green FCF by the solar photo-Fenton process, J. Iran. Chem. Soc. 5 (2008) 346-351.
DOI: 10.1007/bf03246129
[2] M. A. Rauf, S. S. Ashraf, Radiation induced degradation of dyes - An overview, J. Hazard. Mater. 166 (2009) 6-16.
[3] R. H. Souther, T. A. Alspaugh, Textile wastes recovery and treatment: Sewage and Industrial waste, J. Water Pollut. Control Fed. 29 (1957) 804-810.
[4] A. Hamza, M. F. Hamoda, Proc. 35th Purdue Industrial Waste Congress, West Lafayette, IN, USA (1980).
[5] J. P. Lorimer, T. J. Mason, M. Plattes, S. S. Phull, D.J. Walton, Degradation of dye effluent, Pure Appl. Chem. 12 (2001) 1957-1968.
[6] IUPAC glossary of terms used in photochemistry, organic and biomolecular chemistry division commission on photochemistry, Pure Appl. Chem. 60, (1988) 1055-1106.
[7] O. Heintz, D. Robert, J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A, 135 (2000) 77-80.
[8] O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment Chem. Rev. 93 (1993) 671-698.
DOI: 10.1021/cr00018a003
[9] S. C. Ameta, J. J. Vora, S. Sharma, A. Patel, C. Patel, The photoelectrochemical study of picric acid using ZnO as 'n' type semiconductor, Synth. React. Inorg. Met.-Org. Nan. 35 (2005) 433-437.
[10] B. Cao, W. J. Cai, From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions, J. Phys. Chem. C 112 (2008) 680–685.
DOI: 10.1021/jp076870l
[11] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J Photochem. Photobiol. C 1 (2000) 1-21.
[12] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53-229.
[13] H. Wang, J. P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J Phys: Condens. Matter 18 (2006) 421.
[14] J. G. Yu, M. H. Zhou, B. Cheng, X. J. Zhao, Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders, J. Mol. Catal. A: Chem. 246 (2006) 176-184.
[15] Y. Xie, Y. Z. Li, X. J. Zhao, Low-temperature preparation and visible-light-induced catalytic activity of anatase F–N-codoped TiO2, J. Mol. Catal. A Chem. 277 (2007) 119-126.
[16] R. Asashi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
[17] T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist, S. E. Lindquist, Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B 107 (2003) 5709-5716.
DOI: 10.1021/jp027345j
[18] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.
DOI: 10.1021/jp030133h
[19] K. Kobayakawa, Y. Murakami, Y. Sato, Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, J. Photochem. Photobiol. A: Chem. 170 (2005) 177-179.
[20] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin Solid Films, 453-454 (2004) 162–166.
[21] S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, Preparation of nitrogen doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine, J. Mater. Chem. 13 (2003) 2996-3001.
DOI: 10.1039/b309217h
[22] S. U. M. Khan, M. A. Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, J. Sci. 297 (2002) 2243-2245.
[23] A. Nambu, J. Graciani, J. A. Rodriguez, Q. Wu, E. Fujita, J. Fdez Sanz, N-doping of TiO2(110): Photoemission and density functional studies, J. Chem. Phys. 125 (2006) 094706-094714.
DOI: 10.1063/1.2345062
[24] H. Ozaki, S. Iwamoto, M. Inoue, Enhanced visible light sensitivity of nitrogen-doped nanocrystalline Si-modified titania prepared by the glycothermal method, Chem. Lett. 34 (2005) 1082-1083.
DOI: 10.1246/cl.2005.1082
[25] S. Iwamoto, K. Saito, M. Inoue, K. Kagawa, Preparation of the xerogels of nanocrystalline titanias by the removal of the glycol at the reaction temperature after the glycothermal method and their enhanced photocatalytic activities, Nano Lett. 1 (2001) 417-421.
DOI: 10.1021/nl010025b
[26] J. M. Mwabora, T. Lindgren, E. Avendano, T. F. Jaramillo, J. Lu, S. E. Lindquist, C. G. Granqvist, Structure, composition and morphology of photoelectrochemically active TiO2 – Nx thin films deposited by reactive magnetron DC sputtering, J. Phys. Chem. B 108 (2004) 20193-20198.
DOI: 10.1021/jp0368987
[27] Y. Guo, X. W. Z hang, G. R. Han, Investigation of structure and properties of N-doped TiO2 thin films grown by APCVD, Mat. Sci. Eng. B 135 (2006) 83-87.
[28] H. Q. Sun, Y. Bai, Y. P. Cheng, W. Q. Jin, N. P. Xu, Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45 (2006) 4971-4976.
DOI: 10.1021/ie060350f
[29] R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light, J. Phys. Chem. B 109 (2005) 5994-6003.
DOI: 10.1021/jp044979c
[30] C. D. Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B 109 (2005) 11414-11419.
DOI: 10.1021/jp051756t
[31] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation for an efficient N- doping of TiO2 nanotubes, Nano. Lett. 6 (2006) 1080-1082.
DOI: 10.1021/nl0600979
[32] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven nitrogen-doped TiO2 photocatalysts: Effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants, Mat. Sci. Eng. B 117 (2005) 67-75.
[33] J. Wang, J. F. Lu, Q. W. Zhang, S. Yin, T. Sato, F. Saito, Mechanochemical doping of a non-metal element into zinc oxide, Chem. Sustain. Develop., 15 (2007) 249-253.
[34] L. Deng, Y. Chen, M. Yao, S. Wang, B. Zhu, W. Huang, S. Zhang, Synthesis, characterization of B-doped TiO2 nanotubes with high photocatalytic activity, J. Sol-Gel Sci. Technol. 53 (2010) 535–541.
[35] Y. Yu, H. H. Wu, B. L. Zhu, S. R. Wang, W. P. Huang, S. H. Wu, S. M. Zhang, Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes, Catal. Lett. 121 (2008) 165–171.
[36] H. Sun, Y. Bai, H. Liu, W. Jin, N. Xu, Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation, J. Photochem. Photobiol. A: Chem. 201 (2009) 15–22.
[37] Y. Xie, Q. Zhao, X. J. Zhao, Y. Li, Low temperature preparation and characterization of N-doped and N-S-codoped TiO2 by sol–gel route, Catal. Lett. 118 (2007) 231–237.
[38] Y. G. Sheng, L. P. Liang, Y. Xu, D. Jiang, D. Wu, Preparation of N-doped TiO2 visible photocatalyst under low temperature via sol-gel process, Chin. J. Inorg. Chem., 24 (2008) 78–82.
[39] M. Sathish, B. Viswanathan, R. P. Viswanath, Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex, Appl. Catal. B 74 (2007) 307–312.
[40] Y. Yokosuka, K. Oki, H. Nishikiori, Y. Tatsumi, N. Tanaka, T. Fujii, Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process, Res. Chem. Intermed. 35 (2009) 43–53.
[41] C. He, B. Tian, J. Zhang, N, B, Si-tridoped mesoporous TiO2 with high surface area and excellent visible-light photocatalytic activity, Res. Chem. Intermed. 36 (2010) 349–359.
[42] J. Guo, J. Li, A. Yin, K. Fan, W. Dai, Photodegradation of rhodamine B on sulfur doped ZnO/TiO2 nanocomposite photocatalyst under visible-light irradiation, Chin. J. Chem. 28 (2010) 2144-2150.
[43] M. O'Donoghue, A guide to man-made gemstones. Great Britain: Van Nostrand Reinhold Company (1983) p.40–44.
[44] M. Ye, Y. Yang, Y. Zhang, T. Zhang, W. Shao, Hydrothermal synthesis of hydrangea-like F-doped titania microspheres for the photocatalytic degradation of carbamazepine under UV and visible light irradiation, J. Nano. (2012) Art. No. 115134.
DOI: 10.1155/2012/583417
[45] L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu, L. Jian, Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping, Appl. Phys. Lett. 98, (2011) 211903-211905.
DOI: 10.1063/1.3593147
[46] Y. Hu, X. Zhang, C. Wei, Simple preparation of Mn–N-codoped titania photocatalyst with visible light response, Res. Chem. Intermed. 36 (2010) 95–101.
[47] L. Carlier, M. Baron, A. Chamayou, G. Couarazze, Use of co-grinding as a solvent-free solid state method to synthesize dibenzophenazines, Tetrahedron Lett. 52 (2011) 4686-4689.
[48] M. Baron, A. Chamayou, L. Marchioro, J. Raffi, Radicalar probes to measure the action of energy on granular materials, Adv. Powder Technol. 16 (2005) 199-211.
[49] J. Wang, S. Yin, Q.W. Zhang, F. Saito, T. Sato, Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties, Chem. Lett., 32 (2003) 540-541.
DOI: 10.1246/cl.2003.540
[50] J. A. Rengifo-Herrera, J. Kiwi, C. Pulgarin, N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A: Chem. 205 (2009) 109–115.
[51] S. N. Ng, Y. P. Tan, Y. H. Taufiq-Yap, Mechanochemical synthesis and characterisation of bismuth-niobium oxide ion conductors, J. Phys. Sci. 20 (2009) 75–86.
[52] S. Y. Treschev, P. W. Chou, T. H. Tseng, J. B. Wang, E. V. Perevedentseva, C. L. Cheng, Photoactivities of the visible light-activated mixedphase carbon-containing titanium dioxide: The effect of carbon incorporation, Appl. Catal. B 79 (2008) 8-16.
[53] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxide, Science 293 (2001) 269-271.
[54] K. Takeshita, A. Yamakata, T. Ishibashi, H. Onishu, K. Nishijima, T. Ohno, Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2, J. Photochem. Photobiol. 177 (2006) 269-275.
[55] J. Yu, M. Zhou, B. Cheng, X. Zhao, Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders, J. Mol. Catal. A 246 (2006) 176-184.
[56] A. Zaleska, J. W. Sobczak, E. Grabowska, J. Hupka, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light, Appl. Catal. B 78 (2007 92-100.
[57] L. Korosi, I. Dekany, Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide, Colloids Surf. A 280 (2006) 146-154.
[58] C. Daimei, J. Zhongyi, G. Jiaqing, Z. Juhong, Y. Dong, A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6, J. Nanopart. Res. 11 (2009) 303–313.
[59] G. Liu, X. Wanga, L. Wangb, Z. Chen, F. Li, G. Qing, M. Lu, H.-M. Cheng, Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid Interface Sci. 334 (2009) 171–175.
[60] Y. Meng, J. Chen, Y. Wang, H. Dingy, Y. Shan, N, F-codoped TiO2 nanocrystals as visible light-activated photocatalyst, J. Mater. Sci. Technol. 25 (2009) 73.
[61] C. He, B. Tian, J. Zhang, N, B, Si-tridoped mesoporous TiO2 with high surface area and excellent visible-light photocatalytic activity, Res. Chem. Intermed. 36 (2010) 349–359.
[62] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-94.
DOI: 10.1021/cr00033a004
[63] A. Choi, W. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
DOI: 10.1021/j100102a038
[64] T. Ihara, M. Miyoshi, Y. Triyama, O. Marsumato, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B 42 (2003) 403-409.
[65] C. L. Yu, J. C. Yu, A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity, Catal. Lett. 129 (2009) 462-470.
[66] B. Yang, Z. P. Zhu, Y. Zhou, C. B. Xia, Preparation, characterization and photocatalytic activity of Gd/N-codoped TiO2, J. Sci. Conf. Proc. 1 (2009) 243-246.
[67] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy, V. Murugesan, Kinetics of photocatalytic degradation of reactive yellow 17 dye in aqueous solutions using UV irradiation, J. Environ. Sci. Healths, 36 (2003) 203-213.
[68] C. Rodriguez, A. Dominguez, A. Sanroman, Photocatalytic degradation of dyes in aqueous solution operating in a fluidised bed reactor, Chemosphere, 46 (2002) 83-86.
[69] L. Young, J. Yu, Ligninase-catalysed decolorization of synthetic dyes, Water Res., 31 (1997) 1187-1193.
[70] G. Liu, X. Wang, L. Wang, Z. Chen, F. Li, G. Q. Lu, H. M. Cheng, Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid. Inter. Sci. 334 (2009) 171–175.
[71] D. Chen, Z. Jiang, J. Geng, J. Zhu, D. Yang, A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6, J. Nanopart. Res. 11 (2009) 303–313.
[72] H. Ozaki, S. Iwamoto, M. Inoue, Improved visible-light responsive photocatalytic activity of N and Si co-doped titanias, J. Mater. Sci. 42 (2007) 4009–4017.
[73] N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ahmad, Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications, Curr. Appl. Phys. 12 (2012) 1485-1492.
[74] F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, N. Wu, Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing, Nano. Res. 5 (2012) 213–221.
[75] L. Lin, W. Lin, J. L. Xie, Y. X. Zhu, B. Y. Zhao, Y. C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles, Appl. Catal. B, 75 (2007) 52-58.
[76] S. M. Marques, C. J. Tavares , L. F. Oliveira, A. M. F. Oliveira-Campos, Photocatalytic degradation of C.I. reactive blue 19 with nitrogen-doped TiO2 catalysts thin films under UV/visible light, J. Mol. Struc. 983 (2010) 147–152.
[77] D. Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang, Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin, Appl. Surf. Sci. 255 (2008) 2879–2884.
[78] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
DOI: 10.1021/cr00035a013
[79] M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light, Appl. Catal. B: Environ. 89 (2009) 563–569.
[80] H. Ozaki, S. Iwamoto, M. Inoue, Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation, Catal. Lett. 113 (2007) 95-98.
[81] Y. Wang, Z. Zhang, Y. Zhu, Z. Li, R. Vajtai, L. Ci, P. M. Ajayan, Nanostructured VO2 photocatalysts for hydrogen production, ACS Nano, 2 (2008) 1492–1496.
DOI: 10.1021/nn800223s
[82] X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, Z. Zou, Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production, Appl. Surf. Sci. 253 (2007) 8500–8506.
[83] J. S. Jang, S. H. Choi, D. H. Kim, J. W. Jang, K. S. Lee, J. S. Lee, Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube, J. Phys. Chem. C, 113 (2009) 8990–8996.
DOI: 10.1021/jp900653r
[84] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503–6570.
DOI: 10.1021/cr1001645
[85] L. Randeniya, A. Murphy, I. Plumb, A study of S doped TiO2 for photoelectrochemical hydrogen generation from water, J. Mater. Sci., 43 (2008) 1389–1399.
[86] J. Yuan, M. Chen, J. Shi, W. Shangguan, Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride, Int. J. Hydrogen Energ., 31 (2006) 1326–1331.
[87] T. Mishima, M. Matsuda, M. Miyake, Visible-light photocatalytic properties and electronic structure of Zr based oxynitride, Zr2ON2, derived from nitridation of ZrO2, Appl. Catal. A, 324 (2007) 77–82.
[88] Y. Sun, C. J. Murphy, K. R. Reyes-Gil, E. A. Reyes-Garcia, J. P. Lilly, D. Raftery, Carbon-doped In2O3 films for photoelectrochemical hydrogen production, Int. J. Hydrogen Energ., 33 (2008) 5967–5974.
[89] S. Ge, H. Jia, H. Zhao, Z. Zheng, and L. Zhang, First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures, J. Mater. Chem. 20 (2010) 3052–3058.
DOI: 10.1039/b923586h
[90] Q. Gu, H. Zhuang, J. Long, X. An, H. Lin, H. Lin, X. Wang, Enhanced hydrogen production over C-Doped CdO photocatalyst in Na2S/Na2SO3 solution under visible light irradiation, Internat. J. Photoenergy (2012) Article ID 857345.
DOI: 10.1155/2012/857345
[91] X. Sun, H. Liu, J. Dong, J. Wei, Y. Zhang, Preparation and characterization of Ce/N-codoped TiO2 particles for production of H2 by photocatalytic splitting water under visible light, Catal. Lett. 135 (2010) 219–225.
[92] M. Z. Selcuk, M. S. Boroglu, I. Boz, Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst, Reac. Kinet. Mech. Cat. 106 (2012) 313–324.
[93] P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction toward an understanding of its killing mechanism, Appl. Environ. Microbiol. 65 (1999) 4094–4098.
[94] M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito., Cobalt ion doped TiO2 photocatalyst response to visible light, J. Colloid Interface Sci. 224 (2000) 202–204.
[95] M. C. Yang, T. S. Yang, M. S. Wong, Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition, Thin Solid Films 469–470 (2004) 1–5.
[96] T. S. Yang, C. B. Shiu, M. S. Wong, Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation, Surface Sci. 548 (2004) 75–82.
[97] M. S. Wong, W. C. Chu, D. S. Sun, H. S. Huang, J. H. Chen, P. J. Tsai, N. T. Lin, M. S. Yu, S. F. Hsu, S. L. Wang, H. H. Chang, Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol. (2006) 6111–6116.
DOI: 10.1128/aem.02580-05
[98] M. C. Martino, G. Rossi, I. Martini, I. Tattoli, D. Chiavolini, A. Phalipon, P. J. Sansonetti, M. L. Bernardini, Mucosal lymphoid infiltrate dominates colonic pathological changes in murine experimental shigellosis, J. Infect. Dis. 192 (2005) 136–148.
DOI: 10.1086/430740
[99] C. W. Dunnill, Z. A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D. J. Morganc, I. P. Parkin, White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application, J. Mater. Chem., 19 (2009) 8747–8754.
DOI: 10.1039/b913793a
[100] T. Fukuda, Y. Imamura, M. Maeda, T. Satou, M. Oonaka, H. Morita, Bactericidal activity of copper-containing sulfur-doped TiO2 against staphylococcus aureus under visible-light illumination, J. Environ. Biotech. 9 (2009) 37–41.